跑通FAST_LIO_LOCALIZATION记录

  1. 代码地址:https://github.com/HViktorTsoi/FAST_LIO_LOCALIZATION
  2. 跟着官网步骤安装 FAST-LIO
  3. 创建python2.7的虚拟环境(电脑上安装很多个版本的python,默认的不是python2.7)
    conda create -n mypython27 python=2.7
    conda activate mypython27
    
    sudo apt install ros-melodic-ros-numpy
    pip install pyrsistent==0.15
    pip install -i http://pypi.douban.com/simple/ --trusted-host pypi.douban.com open3d==0.9
    pip install rospy
  4.  把global_localization.py的第一行改成#!/home/wanghui/apps/miniconda3/envs/mypython27/bin/python2.7,也就是虚拟环境下python2.7的路径
  5. Build(跟着官网的步骤来)

### FAST_LIO_LOCALIZATION 点云配准失败解决方案 当遇到FAST_LIO_LOCALIZATION点云配准不上问题时,可以从多个角度排查并解决问题。 #### 参数配置调整 参数设置不当可能导致点云配准失败。建议仔细检查`FAST_LIO_LOCALIZATION`中涉及的关键参数,特别是关于传感器模型、初始位姿估计以及匹配阈值等方面的设定[^1]。对于激光雷达数据处理部分,需确认扫描频率、分辨率等硬件特性是否被正确反映到软件配置里;而对于IMU预积分模块,则要关注加速度计偏差校正精度等问题。 ```yaml # Example of configuration file snippet for tuning parameters related to point cloud registration. point_cloud_registration: max_correspondence_distance: 0.2 # Maximum distance between two points considered as correspondence pair transformation_epsilon: 1e-6 # Convergence criteria for iterative closest point algorithm euclidean_fitness_epsilon: 1e-6 # Fitness score threshold used by ICP optimizer ``` #### 数据同步与时钟偏移修正 时间戳不同步会严重影响多源异构传感数据融合效果,进而影响最终定位准确性。应确保所有输入设备的时间基准一致,并采用合适的方法补偿可能存在的微小差异。例如,在ROS环境下可以过`tf`库来管理坐标变换关系及其对应时刻的信息传递过程[^2]。 #### 初始姿态粗略估计改进 良好的初值有助于加速迭代求解收敛速度并提高鲁棒性。如果当前算法依赖于外部GNSS信号提供绝对位置参考,则要考虑其可用性和可靠性因素;也可以尝试引入其他辅助手段如轮速计里程计来进行局部路径跟踪预测,从而为后续精确定向奠定基础[^3]。 #### 调试工具利用 借助可视化调试工具可以帮助快速定位潜在错误根源所在。比如RViz能够直观展示三维空间内各物体相对分布情况及运动轨迹变化趋势;而rqt_graph则可用于分析节点间消息流交互模式是否存在异常现象。
评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值