随机过程的极限理论中的一个性质证明

随机过程的极限理论中的一个性质证明

先说明一下要证明的性质,来源于: 《Limit Theorems for Stochastic Processes》P5.

proposition1.21
Let X X X be an optional process. When considered as a mapping on Ω \Omega Ω × \times × R + R_+ R+, it is F ⨂ R + \mathscr{F} \bigotimes \mathscr{R}_+ FR+-measurable. Moreover, if T is a stopping time, then

  • X T 1 { T < ∞ } X_T1_{\{T<\infty\}} XT1{T<} is F T \mathscr{F}_T FT-measurable(hence, X X X is adapted).
  • the stopped process X T X^T XT is also optional.

基本概念

  • optional process: 对optional field O \mathscr{O} O 可测的Process.
  • optional-field O \mathscr{O} O: 由所有cadlag且adapted的process所生成的 σ \sigma σ-field.
  • cadlag: process的path是左极右连的.
  • path: 固定process的自变量 ω \omega ω,随时间 t t t变化的 X ( ω , t ) X(\omega,t) X(ω,t)即是process X X X的path.
  • adapted: 对于任意的正实数t,都有 X t X_t Xt关于 F t \mathscr{F}_t Ft可测,则说明这个process X X X关于Filtration F F F是adapted的.
  • F T \mathscr{F}_T FT: 如果T是一个停时,则 F T \mathscr{F}_T FT F \mathscr{F} F中对于任何时间t,都满足 A ⋂ { T < ∞ } ∈ F t A\bigcap\{T< \infty \} \in \mathscr{F}_t A{T<}Ft的集合A所构成的集合.
  • 停时: 是一个满足 { T < ∞ } ∈ F t \{T<\infty\}\in \mathscr{F}_t {T<}Ft的从 Ω \Omega Ω R ‾ + \overline{R}_+ R+上的映射.

证明过程

书上已经证明了对于所有的cadlag adapted process,proposition 1.21 所陈述的性质都成立,但并没有详细阐述为什么对于optional process这些性质都成立(cadlag且adapted的process一定是Optional process, 但反之却并不成立,即cadlag adapted process只是Optional process的一个子集,故该证明并不详尽).
我们将在书上已有的证明过程与结果之上,完善整个证明过程.

单调类定理

书上给了利用单调类定理的提示,尽管目前这条路还未走通.

函数单调类定理
A \mathscr{A} A为一个包含 Ω \Omega Ω π \pi π-system, 而 H H H为由从 Ω \Omega Ω R \mathbb{R} R的函数组成的函数类. 如果满足以下条件

  • 对于任意的 A ∈ A A\in\mathscr{A} AA, 有 1 A 1_A 1A是属于 H H H的;
  • 对于任意的 f , g ∈ H f,g \in H f,gH,有 f + g ∈ H f+g \in H f+gH以及对于任意的常数c, 有 c f ∈ H cf\in H cfH.
  • f n {f_n} fn H H H中单调不减,收敛至 f f f的函数列,有 f f f也属于 H H H.

H H H中包含了所有对 σ ( A ) \sigma(\mathscr{A}) σ(A)可测的函数.

证明过程

利用单调类定理进行证明,可知,我们只需要满足proposition 1.21的函数类包含了所有Optional process即可说明所有的optional processes是满足position 1.21的.
关键在于如何确定 π \pi π-system与函数类 H H H.
在这里,我首先确定了函数类 H H H,并以此来证明单调类定理的后两个条件(可以看到,后两个条件与 π \pi π系的选定是无关的).

  • 函数类 H H H: 所有满足Proposition 1.21 的从 Ω × R + \Omega\times\mathbb{R}_+ Ω×R+ R \mathbb{R} R的全体函数
  • π \pi π-system A \mathscr{A} A: 暂且未定
证明函数类 H H H满足单调类定理的后两个条件
  • 对于任意的 f , g ∈ H f,g \in H f,gH,有 f + g ∈ H f+g \in H f+gH以及对于任意的常数c, 有 c f ∈ H cf\in H cfH.
  • f n {f_n} fn H H H中单调不减,收敛至 f f f的函数列,有 f f f也属于 H H H.
    由于 H H H是满足proposition 1.21的全体process构成的类,而proposition 1.21有三条性质,故在此对 H H H的三个性质分别来进行验证
  • F ⨂ R + \mathscr{F} \bigotimes \mathscr{R}_+ FR+-measurable(第一条性质)

由于已知cadlag且adapted的Process是满足 F ⨂ R + \mathscr{F} \bigotimes \mathscr{R}_+ FR+-measurable的,即说明 σ ( X ) ⊆ F ⨂ R + \sigma(X)\subseteq \mathscr{F} \bigotimes \mathscr{R}_+ σ(X)FR+.
而我们知道optional field O \mathscr{O} O ⋁ σ ( X ) \bigvee \sigma(X) σ(X),故而 O ⊆ F ⨂ R + \mathscr{O}\subseteq \mathscr{F} \bigotimes \mathscr{R}_+ OFR+.
对于这一条性质而言,并不需要利用单调类定理进行验证,即可说明optional process一定是 F ⨂ R + \mathscr{F} \bigotimes \mathscr{R}_+ FR+可测的.

  • F ⨂ R + \mathscr{F} \bigotimes \mathscr{R}_+ FR+-measurable(第二条性质)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值