【随机过程】 1 - 相关与随机过程

相关与随机过程

1. 相关的直观表示

1.1 多维随机变量的联合概率密度与联合分布

  随机过程中最重要的概念就是相关。假设我们有两个随机变量X和Y

Joint Distribution f X , Y ( x , y ) = ∂ 2 ∂ x ∂ y F X , Y ( x , y ) F X , Y ( x , y ) = P ( Z ≤ x , Y ≤ y ) \text{Joint Distribution} \\ f_{X,Y} (x,y) = \frac{\partial^2}{\partial_x \partial_y} F_{X,Y}(x,y) \\ F_{X,Y}(x,y) = P(Z \leq x,Y \leq y) Joint DistributionfX,Y(x,y)=xy2FX,Y(x,y)FX,Y(x,y)=P(Zx,Yy)

  多维随机变量联合概率密度就是联合分布函数的导数

1.2 两个随机变量的相关

  下面,我们想举几个例子,直观的表示两个随机变量之间的联系

1.2.1 Independent

Independent \text{Independent} Independent

在这里插入图片描述

f X , Y ( x , y ) = { 1 4 ∣ x ∣ ≤ 1 , ∣ y ∣ ≤ 1 0 o t h e r s f_{X,Y}(x,y)= \begin{cases} \frac{1}{4} & |x| \leq 1, |y| \leq 1 \\ 0 & others \end{cases} fX,Y(x,y)={410x1,y1others

  如果我们想要求XY的联合概率密度,其实就等于X和Y各自的概率密度的乘积

f X , Y ( x , y ) = f X ( x ) f Y ( y ) f_{X,Y}(x,y) = f_X(x) f_Y(y) fX,Y(x,y)=fX(x)fY(y)

  X和Y是独立的,从图中也可以看出来,X改变的时候,Y的分布不会受到影响

  X从x1到x2到xn,Y的分布都是一样的

1.2.2 Correlated

Correlated \text{Correlated} Correlated

在这里插入图片描述

f X , Y ( x , y ) = { 1 π x 2 + y 2 ≤ 1 0 o t h e r s f_{X,Y}(x,y)= \begin{cases} \frac{1}{\pi} & x^2 + y^2 \leq 1 \\ 0 & others \end{cases} fX,Y(x,y)={π10x2+y21others

f X , Y ( x , y ) = f X ( x ) f Y ( y ) f_{X,Y}(x,y) \cancel = f_X(x) f_Y(y) fX,Y(x,y)= fX(x)fY(y)

  当X和Y的相关关系从矩形区域变成了圆形区域,X和Y就有了相关关系,X取不同的值的时候Y的分布会发生变化

  现在,虽然X和Y有了相关关系,但是他们之间没有非常明显的相关趋势

1.2.3 Linear Correlation

Linear Correlation \text{Linear Correlation} Linear Correlation

f X , Y ( x , y ) = { 1 ∣ Ω ∣ ( x , y ) ≤ Ω 0 o t h e r s f_{X,Y}(x,y)= \begin{cases} \frac{1}{|\Omega|} & (x,y) \leq \Omega \\ 0 & others \end{cases} fX,Y(x,y)={Ω10(x,y)Ωothers

在这里插入图片描述

  当X和Y的相关关系从圆形区域变成纺锤形,现在我们发现,X的变化会引起Y的变化。并且这种变化非常有规律。随着X的增大,Y的均值随之增大。此时X和Y产生了线性的关联

  X和Y是线性关联,但又不是完全的线性。因为纺锤形是有宽度的,Y并不是随着X的增大而严格增大。这个线性度我们是有表征方法的。

  相关系数描述的就是这个纺锤形的胖瘦。相关系数越大,纺锤形越瘦。说明X和Y的线性度越高。如果线性度达到极限,就是一条线,也就变成了严格的线性相关。

2. 随机变量的线性相关

2.1 线性相关的求解及其含义

  在相关关系中,我们应该重点关注的是线性相关问题

Y = α Z ⇒ E ( Y − α Z ) 2 Mean Square Error ⇒ m i n α E ( Y − α Z ) 2 ⇒ α o p t = E ( Z Y ) E ( Z 2 ) Y = \alpha Z \Rightarrow E(Y - \alpha Z)^2 \quad \text{Mean Square Error} \\ \Rightarrow min_\alpha E(Y - \alpha Z)^2 \Rightarrow \alpha_{opt} = \frac{E(ZY)}{E(Z^2)} Y=αZE(YαZ)2Mean Square ErrorminαE(YαZ)2αopt=E(Z2)E(ZY)

  假设我们有两个随机变量Y和Z,我们希望计算Z和Y的相关关系,如果直接进行线性相关计算,多半是不行的,会有误差。

  因此,我们会引入均方误差的概念,去表征线性估计的误差。以均方误差最小为优化目标,最终得到的系数实际上就是互相关与自相关相除。

  如果Z和Y是严格的线性相关,均方误差必然是0。如果不是严格的相关,均方误差就不是0,并且反应在图像上就是纺锤形的宽度。

  而α的大小,反应在纺锤形上,就是斜率。这个纺锤形的长轴,就是最小均方误差意义下的线性估计。

在这里插入图片描述

2.2 相关的符号表示说明

  相关就是两个随机变量乘在一起求期望

Correlation E ( Z Y ) \text{Correlation} \\ E(ZY) CorrelationE(ZY)

  不过我们看到的相关,可能会有另外一种表示

E ( ( Z − E ( Z ) ) ( Y − E ( Y ) ) E((Z-E(Z))(Y-E(Y)) E((ZE(Z))(YE(Y))

  这种写法实际上是对相关做了中心化以后的结果

E ( ( Z − E ( Z ) ) ( Y − E ( Y ) ) = E ( Z Y ) − E ( E ( Z ) Y ) − E ( Z E ( Y ) ) + E ( Z ) E ( Y ) E((Z-E(Z))(Y-E(Y)) = E(ZY) - E(E(Z)Y)-E(ZE(Y)) + E(Z)E(Y) E((ZE(Z))(YE(Y))=E(ZY)E(E(Z)Y)E(ZE(Y))+E(Z)E(Y)

  没有随机性的东西可以放到相关外面,继续可以得到

E ( ( Z − E ( Z ) ) ( Y − E ( Y ) ) = E ( Z Y ) − E ( Z ) E ( Y ) − E ( Z ) E ( Y ) + E ( Z ) E ( Y ) = E ( Z Y ) − E ( Z ) E ( Y ) E((Z-E(Z))(Y-E(Y)) = E(ZY) - E(Z)E(Y) - E(Z)E(Y) + E(Z)E(Y) \\ =E(ZY) - E(Z)E(Y) E((ZE(Z))(YE(Y))=E(ZY)E(Z)E(Y)E(Z)E(Y)+E(Z)E(Y)=E(ZY)E(Z)E(Y)

  因此,我们发现,相关中心化和不做中心化实际上只是相差了一个常数。

  因为,一般来说,我们使用的随机变量均值是0,所以,常常就把相关写成前面的那种形式。

  所谓不相关,就是认为相关为0

Uncorrelated:  E ( Z Y ) = 0  Or  E ( Z Y ) − E ( Z ) E ( Y ) = 0 ⇒ E ( Z Y ) = E ( Z ) E ( Y ) \text{Uncorrelated: } \\ E(ZY) = 0 \\ \text{ Or } \\ E(ZY) - E(Z)E(Y) = 0 \Rightarrow E(ZY) = E(Z)E(Y) Uncorrelated: E(ZY)=0 Or E(ZY)E(Z)E(Y)=0E(ZY)=E(Z)E(Y)

2.3 独立与不相关

  独立与不相关之间,独立的要求更高。因为独立一定不相关。但是不相关不一定独立。

  我们下面举个例子。假设θ是(0,2π)上的均匀分布,有两个与θ有关的随机变量

θ ∼ U ( 0 , 2 π ) Z = s i n ( θ ) Y = c o s ( θ ) \theta \sim U(0, 2\pi) Z = sin(\theta) \\ Y = cos(\theta) \\ θU(0,2π)Z=sin(θ)Y=cos(θ)

  Y和Z都是与θ的,显然他们不是独立的。

Z 2 + Y 2 = 1 Z^2 +Y^2 = 1 Z2+Y2=1

  然后我们来计算一下相关性

E ( Z ) = ∫ − ∞ ∞ s i n θ f θ ( θ ) d θ = ∫ 0 2 π s i n θ 1 2 π d θ = 0 E(Z) = \int_{-\infty}^{\infty} sin \theta f_\theta(\theta) d\theta \\ = \int_{0}^{2\pi} sin \theta \frac{1}{2\pi} d\theta = 0 E(Z)=sinθfθ(θ)dθ=02πsinθ2π1dθ=0

E ( Y ) = 0 E(Y) = 0 E(Y)=0

E ( Z Y ) = 1 2 π ∫ 0 2 π s i n θ c o s θ d θ = 0 E(ZY) = \frac{1}{2\pi} \int^{2\pi}_0 sin \theta cos \theta d\theta = 0 E(ZY)=2π102πsinθcosθdθ=0

  可得

E ( Z Y ) = E ( Z ) E ( Y ) E(ZY) = E(Z)E(Y) E(ZY)=E(Z)E(Y)

  因此,二者不相关但是也不独立

2.4 小结

  相关描述了两个随机变量的关联,但是这种关联是比较局限的

3. 相关的几何意义–内积

  下面,我们希望从几何上对相关有一些认识。相关可以看做是某种内积。

Geometric View E ( Z Y ) = < Z , Y > ⇒ Inner Product \text{Geometric View} \\ E(ZY) = <Z,Y> \Rightarrow \text{Inner Product} Geometric ViewE(ZY)=<Z,Y>Inner Product

3.1 内积的性质

  内积是一个二元操作,满足三个性质

  • 对称性

< X , Y > = < Y , X > <X,Y> = <Y,X> <X,Y>=<Y,X>

  • 非负性

  矢量自身的内积大于等于0。并且,如果内积是0,矢量一定也是0

< X , X > ≥ 0 ⇒ < X , X > = 0 ⇔ X = 0 <X,X> \geq 0 \Rightarrow <X,X> = 0 \Leftrightarrow X = 0 <X,X>0<X,X>=0X=0

  • 双线性性质

  如果固定其中一个,看另外一个矢量,他们都是线性的。

Bilinear < X , α Y + β Z > = α < X , Y > + β < X , Z > < α X + β Y , Z > = α < X , Z > + β < Y , Z > \text{Bilinear} \\ <X,\alpha Y + \beta Z> = \alpha <X,Y> +\beta<X,Z> \\ <\alpha X +\beta Y,Z> = \alpha <X,Z> + \beta <Y,Z> Bilinear<X,αY+βZ>=α<X,Y>+β<X,Z><αX+βY,Z>=α<X,Z>+β<Y,Z>

3.2 相关与相关系数

3.2.1 相关与内积

  我们可以检查一下相关是否也满足这三个条件

  • 对称性:相关也是可以交换的

E ( Z Y ) = E ( Y Z ) E(ZY) = E(YZ) E(ZY)=E(YZ)

  • 非负性:自相关也是非负的

E ∣ Z ∣ 2 ≥ 0 E|Z|^2 \geq 0 EZ20

  但是自相关为0,不能推导出Z是0,只能推导出概率是1

E ∣ Z ∣ 2 = 0 ⇒ Z = 0 ⇒ P ( Z = 0 ) = 1 E|Z|^2 = 0 \cancel \Rightarrow Z =0 \\ \Rightarrow P(Z=0) = 1 EZ2=0 Z=0P(Z=0)=1

  这里需要说明一下,在概率论中概率是1和确定性事件有差异。概率是0不表示事情发生不了。概率是1不表示事情一定发生。在[0,1]区间取到有理数的概率为0

  • 双线性:相关也满足
3.2.2 相关系数与内积

  把相关看做成内积是非常重要的。因为内积是具有几何含义的,对应的是角度

c o s ∠ ( x , y ) = < x , y > ( < x , x > < y , y > ) 1 2 cos\angle(x,y) = \frac{<x,y>}{(<x,x><y,y>)^{\frac{1}{2}}} cos(x,y)=(<x,x><y,y>)21<x,y>

  把这个角度换到相关中,我们发现,这个角度就是相关系数的定义

c o s ∠ ( X , Y ) = E ( Z Y ) ( E Z 2 E Y 2 ) 1 2 cos \angle(X,Y) = \frac{E(ZY)}{(EZ^2 EY^2)^{\frac{1}{2}}} cos(X,Y)=(EZ2EY2)21E(ZY)

3.3 内积与柯西不等式

  如果相关系数想要表示角度,就必须在(-1,1)的范围内,我们需要证明一下这个范围是否正确。

  使用柯西不等式即可

∣ < x , y > ∣ ≤ ( < x , x > < y , y > ) 1 2 |<x,y>| \leq (<x,x> <y,y>)^{\frac{1}{2}} <x,y>(<x,x><y,y>)21

  然后我们证明一下柯西不等式。柯西不等式的证明就是韦达定理

Let g ( x , y ) = ∣ < α x + y > < α x + y > ∣ ≥ 0 \text{Let} \\ g(x,y)=|<\alpha x+y><\alpha x +y>| \geq 0 Letg(x,y)=<αx+y><αx+y>0

  使用使用双线性性质展开

α 2 < x , x > + 2 α < x , y > + < y , y > ≥ 0 \alpha^2 <x,x> +2 \alpha <x,y> +<y,y> \geq 0 α2<x,x>+2α<x,y>+<y,y>0

  因为内积是非负的,因此这是一个开口向上的抛物线。必定有0或者1个根。

Δ ≤ 0 ⇒ b 2 − 4 a c ≤ 0 ⇒ 4 < x , y > 2 − 4 < x , x > < y , y > ≤ 0 ⇒ ∣ < x , y > ∣ ≤ ( < x , x > < y , y > ) 1 2 \Delta \leq 0 \Rightarrow b^2 - 4ac \leq 0 \\ \Rightarrow 4<x,y>^2 - 4<x,x><y,y> \leq 0 \\ \Rightarrow |<x,y>| \leq (<x,x><y,y>)^{\frac{1}{2}} Δ0b24ac04<x,y>24<x,x><y,y>0<x,y>(<x,x><y,y>)21

  柯西不等式有很多种形式

∣ ∑ k x k y k ∣ ≤ ( ∑ k x k 2 ) 1 2 ( ∑ k y k 2 ) 1 2 ∫ f ( x ) g ( x ) d x ≤ ( ∫ f 2 ( x ) d x ∫ g 2 ( x ) d x ) 1 2 |\sum_k x_k y_k| \leq (\sum_k x_k^2)^{\frac{1}{2}} (\sum_k y_k^2)^{\frac{1}{2}} \\ \int f(x)g(x) dx \leq (\int f^2(x)dx \int g^2(x)dx)^{\frac{1}{2}} kxkyk(kxk2)21(kyk2)21f(x)g(x)dx(f2(x)dxg2(x)dx)21

3.4 从几何角度看待线性估计

  现在,我们想知道最优估计系数

Y = α Z Y = \alpha Z Y=αZ

  之前是从代数角度求解的。现在我们想通过几何进行求解。可以从投影的角度来看待。

在这里插入图片描述

Y ^ = ∣ ∣ Y ∣ ∣ ∗ c o s ( θ ) ∗ Z ∣ ∣ Z ∣ ∣ = ∣ ∣ Y ∣ ∣ ∗ E ( Z Y ) ∣ ∣ Y ∣ ∣ ∣ ∣ Z ∣ ∣ Z ∣ ∣ Z ∣ ∣ = E ( Z Y ) ∣ ∣ Z ∣ ∣ 2 = E ( Z Y ) E ( Z 2 ) \hat Y = ||Y||* cos(\theta) *\frac{Z}{||Z||}\\ = ||Y|| * \frac{E(ZY)}{||Y||||Z||}\frac{Z}{||Z||} \\ = \frac{E(ZY)}{||Z||^2} = \frac{E(ZY)}{E(Z^2)} Y^=Ycos(θ)ZZ=YYZE(ZY)ZZ=Z2E(ZY)=E(Z2)E(ZY)

4. 相关函数

4.1 随机过程的定义

  为了引入相关函数,我们就要引入随机过程。随机过程就包含了随机和过程两方面

  • 随机:随机变量
  • 过程:就是一个标记,可以是时间也可以是其他的

  随机过程就是一组或一堆随机变量。t不过是个指标。如果t是一维的,不需要做特别说明。如果t不是一维的,就叫做条件随机场

Random Field \text{Random Field} Random Field

4.2 相关函数的定义

  定义了随机过程之后,就可以定义相关函数了。相关函数,就是一个随机过程中任意两个点的相关。因为随机过程中,任取一个点,就是一个随机变量。任意两个随机变量之间做相关,得到的就是相关函数。

(Auto) Correlation Function R Z ( t , s ) = E ( Z ( t ) Z ( s ) ) \text{(Auto) Correlation Function} \\ R_Z(t,s) = E(Z(t)Z(s)) (Auto) Correlation FunctionRZ(t,s)=E(Z(t)Z(s))

  相关函数满足这样的特点

  • 具有对称性
  • 满足柯西不等式

R Z ( t , s ) = R z ( s , t ) ∣ R Z ( t , s ) ∣ ≤ ( R Z ( t , t ) R z ( s , s ) ) 1 2 R_Z(t,s) = R_z(s,t) \\ |R_Z(t,s)| \leq (R_Z(t,t)R_z(s,s))^{\frac{1}{2}} RZ(t,s)=Rz(s,t)RZ(t,s)(RZ(t,t)Rz(s,s))21

4.3 平稳与宽平稳

  相关函数是个二元函数,我们希望把它变成一元的。这个时候就需要引入新的假设以及新的概念。

  我们引入平稳的概念。平稳性是一种不变特性。就是随机过程的某一类统计性质,随着时间的发展变化而保持不变。

  随机过程中有很多种平稳。这里介绍宽平稳。

  宽平稳中有两个统计特性不变。均值随着时间的变化而不变。相关函数在两个变元上,同时平移D,结果保持不变

Wide stationary E ( Z ( t ) ) = m ( t ) ≡ m ( 1 ) R Z ( t , s ) = R Z ( t + D , s + D ) ∀ D ∈ R ⇒ R Z ( t , s ) = R Z ( t − s ) ( 2 ) \text{Wide stationary} \\ E(Z(t)) = m(t) \equiv m \quad\quad(1) \\ R_Z(t,s) = R_Z(t+D,s+D) \quad \forall D \in R\\ \Rightarrow R_Z(t,s) = R_Z(t-s) \quad\quad(2) Wide stationaryE(Z(t))=m(t)m(1)RZ(t,s)=RZ(t+D,s+D)DRRZ(t,s)=RZ(ts)(2)

  宽平稳的这两个特性,第二个比较重要。因为,如果随机过程的均值不是恒定的,我们可以通过一个确定性操作进行处理,即减去一个均值过程

Z ( t ) − m ( t ) Z(t) - m(t) Z(t)m(t)

  但是,如果第二条没有得到满足,也无法使用确定性的操作来进行处理。第二条使得宽平稳随机过程的相关函数,只依赖于两个时刻的差值。然后就相关函数就变成一元的了

4.4 宽平稳随机过程举例

4.4.1 调制信号

Modulated Signal \text{Modulated Signal} Modulated Signal

Z ( t ) = A ( t ) C o s ( 2 π f 0 t + θ ) A ( t ) r . v . θ ∼ U ( 0 , 2 π ) i n d e p e n d e n t Z(t) = A(t) Cos(2 \pi f_0 t + \theta) \\ A(t) \quad r.v. \quad \theta \sim U(0, 2\pi) \quad independent Z(t)=A(t)Cos(2πf0t+θ)A(t)r.v.θU(0,2π)independent

  首先计算一阶矩

E ( Z ( t ) ) = E ( A ( t ) C o s ( 2 π f 0 t + θ ) ) = E ( A ( t ) ) E ( C o s ( 2 π f 0 t + θ ) ) = E ( A ( t ) ) ∫ 0 2 π 1 2 π C o s ( 2 π f 0 t + θ ) d θ = 0 E(Z(t)) = E(A(t) Cos(2 \pi f_0 t + \theta) ) \\ =E(A(t)) E(Cos(2 \pi f_0 t + \theta)) \\ = E(A(t)) \int _{0}^{2 \pi} \frac{1}{2 \pi} Cos(2 \pi f_0 t + \theta) d\theta = 0 E(Z(t))=E(A(t)Cos(2πf0t+θ))=E(A(t))E(Cos(2πf0t+θ))=E(A(t))02π2π1Cos(2πf0t+θ)dθ=0

  再计算下相关函数

R Z ( t , s ) = E ( A ( t ) ( A ( s ) ) E ( C o s ( 2 π f 0 t + θ ) C o s ( 2 π f 0 s + θ ) ) R_Z(t,s)=E(A(t)(A(s)) E(Cos(2 \pi f_0 t + \theta)Cos(2 \pi f_0 s + \theta)) RZ(t,s)=E(A(t)(A(s))E(Cos(2πf0t+θ)Cos(2πf0s+θ))

  积化和差公式

R Z ( t , s ) = E ( A ( t ) ( A ( s ) ) E ( c o s ( 2 π f 0 ( t + s ) + 2 θ ) 2 + c o s ( 2 π f 0 ( t − s ) ) 2 ) = E ( A ( t ) ( A ( s ) ) ( E ( c o s ( 2 π f 0 ( t + s ) + 2 θ ) 2 ) + c o s ( 2 π f 0 ( t − s ) ) 2 ) R_Z(t,s)=E(A(t)(A(s)) E(\frac{cos(2\pi f_0(t+s)+2\theta)}{2}+\frac{cos(2\pi f_0(t-s))}{2}) \\ = E(A(t)(A(s))(E(\frac{cos(2\pi f_0(t+s)+2\theta)}{2})+\frac{cos(2\pi f_0(t-s))}{2} ) \\ RZ(t,s)=E(A(t)(A(s))E(2cos(2πf0(t+s)+2θ)+2cos(2πf0(ts)))=E(A(t)(A(s))(E(2cos(2πf0(t+s)+2θ))+2cos(2πf0(ts)))

  因为

E ( c o s ( 2 π f 0 ( t + s ) + 2 θ ) 2 ) = 0 E(\frac{cos(2\pi f_0(t+s)+2\theta)}{2}) = 0 E(2cos(2πf0(t+s)+2θ))=0

  故

R Z ( t , s ) = E ( A ( t ) ( A ( s ) ) c o s ( 2 π f 0 ( t − s ) ) 2 R_Z(t,s) = E(A(t)(A(s))\frac{cos(2\pi f_0(t-s))}{2} RZ(t,s)=E(A(t)(A(s))2cos(2πf0(ts))

  因此,只要振幅过程是个宽平稳随机过程,调整信号不管是振幅调制还是相位调制,就都是一个宽平稳随机过程。

4.4.2 随机电报

  随机电报的特点在于,信号只有1和-1两种

  在[s,t]区间中,1和-1的切片次数为k,并且概率是已知的

Random Telegraph Signal \text{Random Telegraph Signal} Random Telegraph Signal

在这里插入图片描述

[ S , t ] ⇒ P ( k ) = λ ( t − s ) k k ! e x p ( − λ ( t − s ) ) [S,t] \Rightarrow P(k) = \frac{\lambda(t-s)^k}{k!} exp(-\lambda(t-s)) [S,t]P(k)=k!λ(ts)kexp(λ(ts))

  这其实就是一种泊松分布

Poisson Distributrion \text{Poisson Distributrion} Poisson Distributrion

  计算一下二阶矩

E ( Z ( t ) Z ( s ) ) = R Z ( t , s ) E(Z(t)Z(s)) = R_Z(t,s) E(Z(t)Z(s))=RZ(t,s)

  我们发现Z(t)*Z(s)的乘积只有1和-1两种情况。因此,求均值就是用乘积为1的概率假设乘积为-1概率的和即可

R Z ( t , s ) = 1 ∗ P 1 + ( − 1 ) ∗ P − 1 ( i ) R_Z(t,s) = 1*P_1 + (-1)*P_{-1} \quad\quad (i) RZ(t,s)=1P1+(1)P1(i)

  只要在t到s之间翻转的次数是偶数次,乘积必然是1,翻转次数为奇数次,乘积必然是-1。

P 1 = P ( [ s , t ] e v e n ) = ∑ k e v e n λ ( t − s ) k k ! e x p ( − λ ( t − s ) ) ( i i ) P − 1 = P ( [ s , t ] o d d ) = ∑ k o d d λ ( t − s ) k k ! e x p ( − λ ( t − s ) ) ( i i i ) P_1 = P([s,t]even) = \sum_{k even} \frac{\lambda(t-s)^k}{k!} exp(-\lambda(t-s)) \quad\quad (ii) \\ P_{-1} = P([s,t]odd) = \sum_{k odd} \frac{\lambda(t-s)^k}{k!} exp(-\lambda(t-s)) \quad\quad (iii) P1=P([s,t]even)=kevenk!λ(ts)kexp(λ(ts))(ii)P1=P([s,t]odd)=koddk!λ(ts)kexp(λ(ts))(iii)

  我们表示一下指数函数的幂级数展开

e λ ( t − s ) = ∑ k = 0 ∞ ( λ ( t − s ) ) k k ! e^{\lambda(t-s)} = \sum_{k=0}^{\infty} \frac{(\lambda(t-s))^k}{k!} eλ(ts)=k=0k!(λ(ts))k

  加一个负号

e − λ ( t − s ) = ∑ k = 0 ∞ ( − λ ( t − s ) ) k k ! e^{-\lambda(t-s)} = \sum_{k=0}^{\infty} \frac{(-\lambda(t-s))^k}{k!} eλ(ts)=k=0k!(λ(ts))k

  因为加了一个负号,如果k是偶数,底下是正的,如果k是奇数,底下是负的。因此,只要把两个相加取平均,得到的就是所有偶数项的和;做差取平均,得到的就是所有奇数项的和

∑ k e v e n λ ( t − s ) k k ! = e λ ( t − s ) + e − λ ( t − s ) 2 ( i v ) ∑ k o d d λ ( t − s ) k k ! = e λ ( t − s ) − e − λ ( t − s ) 2 ( v ) \sum_{k even} \frac{\lambda(t-s)^k}{k!} = \frac{e^{\lambda(t-s)} +e^{-\lambda(t-s)} }{2} \quad\quad (iv)\\ \sum_{k odd} \frac{\lambda(t-s)^k}{k!} = \frac{e^{\lambda(t-s)} -e^{-\lambda(t-s)} }{2} \quad\quad (v) kevenk!λ(ts)k=2eλ(ts)+eλ(ts)(iv)koddk!λ(ts)k=2eλ(ts)eλ(ts)(v)

  把(iv)和(v)代入(ii)和(iii)可得

P 1 = P ( [ s , t ] e v e n ) = ∑ k e v e n λ ( t − s ) k k ! e x p ( − λ ( t − s ) ) = e λ ( t − s ) + e − λ ( t − s ) 2 e x p ( − λ ( t − s ) ) = 1 + e − 2 λ ( t − s ) 2 ( v i ) P − 1 = P ( [ s , t ] o d d ) = ∑ k o d d λ ( t − s ) k k ! e x p ( − λ ( t − s ) ) = e λ ( t − s ) − e − λ ( t − s ) 2 e x p ( − λ ( t − s ) ) = 1 − e − 2 λ ( t − s ) 2 ( v i i ) P_1 = P([s,t]even) = \sum_{k even} \frac{\lambda(t-s)^k}{k!} exp(-\lambda(t-s)) \\ =\frac{e^{\lambda(t-s)} +e^{-\lambda(t-s)} }{2} exp(-\lambda(t-s)) \\ = \frac{1 + e^{-2\lambda(t-s)}}{2} \quad\quad (vi) P_{-1} = P([s,t]odd) = \sum_{k odd} \frac{\lambda(t-s)^k}{k!} exp(-\lambda(t-s)) \\ = \frac{e^{\lambda(t-s)} -e^{-\lambda(t-s)} }{2} exp(-\lambda(t-s)) \\ =\frac{1-e^{-2\lambda(t-s)}}{2} \quad\quad (vii) P1=P([s,t]even)=kevenk!λ(ts)kexp(λ(ts))=2eλ(ts)+eλ(ts)exp(λ(ts))=21+e2λ(ts)(vi)P1=P([s,t]odd)=koddk!λ(ts)kexp(λ(ts))=2eλ(ts)eλ(ts)exp(λ(ts))=21e2λ(ts)(vii)

  把(vi)和(vii)代入(i)

R Z ( t , s ) = 1 ∗ P 1 + ( − 1 ) ∗ P − 1 = 1 + e − 2 λ ( t − s ) 2 − 1 − e − 2 λ ( t − s ) 2 = e − 2 λ ( t − s ) R_Z(t,s) = 1*P_1 + (-1)*P_{-1} \\ = \frac{1 + e^{-2\lambda(t-s)}}{2} - \frac{1-e^{-2\lambda(t-s)}}{2} \\ = e^{-2\lambda(t-s)} RZ(t,s)=1P1+(1)P1=21+e2λ(ts)21e2λ(ts)=e2λ(ts)

  我们发现,随机电报信号就是一个宽平稳随机过程

  • 3
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值