离散鞅论2 | 停时与停时定理

3.7 停时与停时定理

为了更好表述,下面给出一个不严谨的 σ \sigma σ 域和停时的定义。

F n = σ ( Y k , 0 ≤ k ≤ n ) F_n = \sigma(Y_k,0\le k \le n) Fn=σ(Yk,0kn) 表示 Y 0 , . . . , Y n Y_0,...,Y_n Y0,...,Yn 可提供的全部信息,称为他们生成的 σ \sigma σ 域。

假设有非负随机变量 τ \tau τ 和随机序列 { Y n , n ≥ 0 } \{Y_n,n\ge0\} {Yn,n0},若 ∀ n ≥ 0 \forall n\ge0 n0 { τ = n } ∈ F n \{\tau=n\}\in F_n {τ=n}Fn,则称 τ \tau τ { Y n , n ≥ 0 } \{Y_n,n\ge0\} {Yn,n0}停时

注:若 τ \tau τ 是一个停时 ∀ n ≥ 0 \forall n\ge0 n0 { τ = n } ∈ F n \{\tau=n\}\in F_n {τ=n}Fn,那么可以导出事件 { τ ≤ n } , { τ > n } , { τ ≥ n } , { τ < n } \{\tau\le n\},\{\tau>n\},\{\tau\ge n\},\{\tau<n\} {τn},{τ>n},{τn},{τ<n} 均只由 Y 0 , . . . , Y n Y_0,...,Y_n Y0,...,Yn 确定,这意味着截至到 n n n 时刻,根据已有的信息可以完全确定停时所对应的事件是否已经发生。

停时的基本性质:设 τ , σ \tau,\sigma τ,σ 是关于 { Y n , n ≥ 0 } \{Y_n,n\ge0\} {Yn,n0} 的停时,则 τ + σ , τ ∧ σ , τ ∨ σ \tau+\sigma, \tau\wedge\sigma,\tau\vee\sigma τ+σ,τσ,τσ 均是停时。

定理 3.3(停时定理1):设 { X n } \{X_n\} {Xn} 是鞅, τ \tau τ 是停时,若

  1. P ( τ < ∞ ) = 1 P(\tau<\infty)=1 P(τ<)=1
  2. E ∣ X τ ∣ < ∞ {\mathbb E}|X_\tau| < \infty EXτ<
  3. lim ⁡ n → ∞ E ∣ X n I { τ > n } ∣ = 0 \lim_{n\to\infty} {\mathbb E}|X_n I_{\{\tau>n\}}| = 0 limnEXnI{τ>n}=0

E X τ = E X 0 {\mathbb E}X_\tau = {\mathbb E}X_0 EXτ=EX0

定理 3.4(停时定理2):设 { X n } \{X_n\} {Xn} 是鞅, τ \tau τ 是停时,若

  1. P ( τ < ∞ ) = 1 P(\tau<\infty)=1 P(τ<)=1(也可以用其增强型条件 E τ < ∞ {\mathbb E}\tau<\infty Eτ<
  2. E [ sup ⁡ n ≥ 0 ∣ X τ ∧ n ∣ ] < ∞ {\mathbb E}[\sup_{n\ge0} |X_{\tau \wedge n}|] < \infty E[supn0Xτn]<(这是定理 3.3 中后两个条件的增强型条件)

E X τ = E X τ ∧ n = E X 0 {\mathbb E}X_\tau = {\mathbb E}X_{\tau \wedge n} = {\mathbb E}X_0 EXτ=EXτn=EX0

推论 3.1(停时定理 3):设 { X n } \{X_n\} {Xn} 关于 { Y n } \{Y_n\} {Yn} 是鞅, τ \tau τ 是停时,且 E τ < ∞ {\mathbb E}\tau<\infty Eτ<。若存在一个常数 b < ∞ b<\infty b<,满足对 ∀ n < ∞ \forall n<\infty n< E [ ∣ X n + 1 − X n ∣ ∣ Y 0 , . . . , Y n ] ≤ b {\mathbb E}[|X_{n+1}-X_{n}| | Y_0,...,Y_n]\le b E[Xn+1XnY0,...,Yn]b,则 E X τ = E X 0 {\mathbb E}X_\tau = {\mathbb E}X_0 EXτ=EX0

推论 3.2(停时定理 4):设 { X n } \{X_n\} {Xn} 是鞅, τ \tau τ 是停时,若

  1. P ( τ < ∞ ) = 1 P(\tau<\infty)=1 P(τ<)=1
  2. ∀ n , E [ X τ ∧ n 2 ] \forall n, {\mathbb E}[X_{\tau \wedge n}^2] n,E[Xτn2] 一致有界。

E X τ = E X 0 {\mathbb E}X_\tau = {\mathbb E}X_0 EXτ=EX0

在证明停时定理之前,需要先介绍两个引理。

引理 3.1:若 { X n } \{X_n\} {Xn} 是关于 { Y n } \{Y_n\} {Yn} 的鞅, τ \tau τ 是关于 { Y n } \{Y_n\} {Yn} 的停时,则 ∀ n ≥ 1 \forall n\ge1 n1 E X 0 = E X τ ∧ n = E X n {\mathbb E}X_0 = {\mathbb E}X_{\tau\wedge n} = {\mathbb E}X_n EX0=EXτn=EXn

证明: E X τ ∧ n = E [ X τ I { τ < n } ] + E [ X n I { τ ≥ n } ] = ∑ k < n E [ X k I { τ = k } ] + E [ X n I { τ ≥ n } ] {\mathbb E}X_{\tau\wedge n} = {\mathbb E}[X_\tau I_{\{\tau< n\}}] + {\mathbb E}[X_n I_{\{\tau \ge n\}}] = \sum_{k<n} {\mathbb E}[X_k I_{\{\tau=k\}}] + {\mathbb E}[X_n I_{\{\tau \ge n\}}] EXτn=E[XτI{τ<n}]+E[XnI{τn}]=k<nE[XkI{τ=k}]+E[XnI{τn}],其中
E [ X n I { τ = k } ] = E [ E [ X n I { τ = k } ∣ Y 0 , . . . , Y k ] ] = E [ I { τ = k } E [ X n ∣ Y 0 , . . . , Y k ] ] = E [ X k I { τ = k } ] {\mathbb E}[X_n I_{\{\tau = k\}}] = {\mathbb E}[{\mathbb E}[X_n I_{\{\tau=k\}} | Y_0,...,Y_k]] = {\mathbb E}[I_{\{\tau=k\}}{\mathbb E}[X_n | Y_0,...,Y_k]] = {\mathbb E}[X_k I_{\{\tau = k\}}] E[XnI{τ=k}]=E[E[XnI{τ=k}Y0,...,Yk]]=E[I{τ=k}E[XnY0,...,Yk]]=E[XkI{τ=k}]
于是 E X τ ∧ n = E X n {\mathbb E}X_{\tau\wedge n} = {\mathbb E}X_n EXτn=EXn。证毕。

引理 3.2:设 X X X 是一个随机变量,满足 E ∣ X ∣ < ∞ {\mathbb E}|X|<\infty EX< τ \tau τ 是一个关于 { Y n } \{Y_n\} {Yn} 的停时,且 P ( τ < ∞ ) = 1 P(\tau<\infty)=1 P(τ<)=1,则 lim ⁡ n → ∞ E [ X I { τ > n } ] = 0 , lim ⁡ n → ∞ E [ X I { τ ≤ n } ] = E X \lim_{n\to\infty} {\mathbb E}[X I_{\{\tau>n\}}]=0,\lim_{n\to\infty} {\mathbb E}[X I_{\{\tau\le n\}}]={\mathbb E}X limnE[XI{τ>n}]=0,limnE[XI{τn}]=EX

证明:由于 lim ⁡ n → ∞ I { τ ≤ n } = 1 \lim_{n\to\infty} I_{\{\tau\le n\}}=1 limnI{τn}=1 lim ⁡ n → ∞ E [ ∣ X ∣ I { τ ≤ n } ] = E ∣ X ∣ \lim_{n\to\infty}{\mathbb E}[|X| I_{\{\tau\le n\}}] = {\mathbb E}|X| limnE[XI{τn}]=EX,因此 lim ⁡ n → ∞ E [ ∣ X ∣ I { τ > n } ] = 0 \lim_{n\to\infty} {\mathbb E}[|X| I_{\{\tau> n\}}]=0 limnE[XI{τ>n}]=0,于是有 lim ⁡ n → ∞ E [ X I { τ > n } ] = 0 \lim_{n\to\infty} {\mathbb E}[X I_{\{\tau> n\}}]=0 limnE[XI{τ>n}]=0。证毕。

证明(停时定理 1):暂略。

3.8 上穿不等式

对于给定区间 ( a , b ) , b > a (a,b),b>a (a,b),b>a,如果一个随机序列先到达 a a a 下面,再到达 b b b 上面,即为上穿 ( a , b ) (a,b) (a,b) 一次,上穿不等式就要研究序列上穿次数的问题。

对随机序列 { X n } \{X_n\} {Xn},令 V ( n ) ( a , b ) V^{(n)}(a,b) V(n)(a,b) X 0 , . . . , X n X_0,...,X_n X0,...,Xn 上穿 ( a , b ) (a,b) (a,b) 的次数,令 α 0 = 0 \alpha_0=0 α0=0,记 α 1 \alpha_1 α1 为首次到达 ( − ∞ , a ] (-\infty,a] (,a] 的时间, α 2 \alpha_2 α2 α 1 \alpha_1 α1 之后首次到达 b b b 的时间,即 α 1 = min ⁡ { n : n ≥ 0 , X n ≤ a } \alpha_1 = \min\{n:n\ge0,X_n\le a\} α1=min{n:n0,Xna} α 2 = min ⁡ { n : n > α 1 , X n ≥ b } \alpha_2=\min\{n:n>\alpha_1,X_n\ge b\} α2=min{n:n>α1,Xnb};依此类推 α 2 k − 1 = min ⁡ { n : n > α 2 k − 2 , X n ≤ a } \alpha_{2k-1}=\min\{n:n>\alpha_{2k-2},X_n\le a\} α2k1=min{n:n>α2k2,Xna} α 2 k = min ⁡ { n : n > α 2 k − 1 , X n ≥ b } \alpha_{2k}=\min\{n:n>\alpha_{2k-1},X_n\ge b\} α2k=min{n:n>α2k1,Xnb}。于是可以定义上穿次数 V ( n ) ( a , b ) = max ⁡ { k : k ≥ 0 , α 2 k ≤ n } V^{(n)}(a,b)=\max\{k:k\ge0,\alpha_{2k}\le n\} V(n)(a,b)=max{k:k0,α2kn}

定理 3.5(上穿不等式):设 { X n } \{X_n\} {Xn} 关于 { Y n } \{Y_n\} {Yn}下鞅 V ( n ) ( a , b ) V^{(n)}(a,b) V(n)(a,b) X 0 , . . . , X n X_0,...,X_n X0,...,Xn 上穿 ( a , b ) (a,b) (a,b) 的次数,则
E [ V ( n ) ( a , b ) ] ≤ E [ ( X n − a ) + ] − E [ ( X 0 − a ) + ] b − a ≤ E X n + + ∣ a ∣ b − a {\mathbb E}[V^{(n)}(a,b)] \le \frac{{\mathbb E}[(X_n-a)^+] - {\mathbb E}[(X_0-a)^+]}{b-a} \le \frac{{\mathbb E}X_n^+ +|a|}{b-a} E[V(n)(a,b)]baE[(Xna)+]E[(X0a)+]baEXn++a
其中 a + = max ⁡ ( a , 0 ) a^+=\max(a,0) a+=max(a,0)

证明:因为 { X n } \{X_n\} {Xn} 关于 { Y n } \{Y_n\} {Yn} 是下鞅,所以 { ( X n − a ) + } \{(X_n-a)^+\} {(Xna)+} 关于 { Y n } \{Y_n\} {Yn} 也是下鞅。 X ~ n = ( X n − a ) + \tilde{X}_n=(X_n-a)^+ X~n=(Xna)+ 上穿过 ( 0 , b − a ) (0,b-a) (0,ba) 的次数也是 V ( n ) ( a , b ) V^{(n)}(a,b) V(n)(a,b),因此只需要证明 ( b − a ) E [ V ( n ) ( a , b ) ] ≤ E X ~ n − E X ~ 0 (b-a){\mathbb E}[V^{(n)}(a,b)]\le {\mathbb E}\tilde{X}_n - {\mathbb E}\tilde{X}_0 (ba)E[V(n)(a,b)]EX~nEX~0
E X ~ n − E X ~ 0 = E [ ( X ~ n − X ~ 2 V ( n ) ) + ∑ k = 1 V ( n ) ( X ~ α 2 k − X ~ α 2 k − 1 ) + ∑ k = 1 V ( n ) ( X ~ α 2 k − 1 − X ~ α 2 k − 2 ) ] = E [ ( X ~ n − X ~ 2 V ( n ) ) ] + E [ ∑ k = 1 V ( n ) ( X ~ α 2 k − X ~ α 2 k − 1 ) ] + E [ ∑ k = 1 V ( n ) ( E X ~ α 2 k − E X ~ α 2 k − 1 ) ] = I + II + III \begin{aligned} {\mathbb E}\tilde{X}_n - {\mathbb E}\tilde{X}_0 &= {\mathbb E}\left[(\tilde{X}_{n}-\tilde{X}_{2V^{(n)}}) + \sum_{k=1}^{V^{(n)}}(\tilde{X}_{\alpha_{2k}} - \tilde{X}_{\alpha_{2k-1}}) + \sum_{k=1}^{V^{(n)}}(\tilde{X}_{\alpha_{2k-1}} - \tilde{X}_{\alpha_{2k-2}}) \right] \\ &= {\mathbb E}\left[(\tilde{X}_{n}-\tilde{X}_{2V^{(n)}})\right] + {\mathbb E}\left[\sum_{k=1}^{V^{(n)}}(\tilde{X}_{\alpha_{2k}} - \tilde{X}_{\alpha_{2k-1}})\right] + {\mathbb E}\left[\sum_{k=1}^{V^{(n)}}({\mathbb E}\tilde{X}_{\alpha_{2k}} - {\mathbb E}\tilde{X}_{\alpha_{2k-1}}) \right] \\ &= \text{I + II + III} \end{aligned} EX~nEX~0=E(X~nX~2V(n))+k=1V(n)(X~α2kX~α2k1)+k=1V(n)(X~α2k1X~α2k2)=E[(X~nX~2V(n))]+Ek=1V(n)(X~α2kX~α2k1)+Ek=1V(n)(EX~α2kEX~α2k1)=I + II + III
根据下鞅的定义有 I,III ≥ 0 \text{I,III}\ge0 I,III0,因此 II ≥ E [ ( b − a ) V ( n ) ( a , b ) ] \text{II}\ge {\mathbb E}[(b-a)V^{(n)}(a,b)] IIE[(ba)V(n)(a,b)]。证毕。

Remark:为什么会有 III > 0 \text{III}>0 III>0?上面的第二个等式成立吗?

推论 3.5.1:上鞅下穿不等式,略。

定理 3.6(鞅收敛定理):设 { X n } \{X_n\} {Xn} 关于 { Y n } \{Y_n\} {Yn}下鞅 sup ⁡ n E ∣ X n ∣ < ∞ \sup_{n}{\mathbb E}|X_n|<\infty supnEXn<,则存在一个随机变量 X ∞ X_{\infty} X 使 { X n , n ≥ 0 } \{X_n,n\ge0\} {Xn,n0} 以概率 1 收敛于 X ∞ X_\infty X,即 P ( lim ⁡ n → ∞ X n = X ∞ ) = 1 P(\lim_{n\to\infty} X_n=X_\infty)=1 P(limnXn=X)=1,且 E ∣ X ∞ ∣ < ∞ {\mathbb E}|X_\infty|<\infty EX<

证明:首先由于 E X n + ≤ E ∣ X n ∣ ≤ 2 E X n + − E X n {\mathbb E}X_n^+ \le {\mathbb E}|X_n| \le 2{\mathbb E}X_n^+-{\mathbb E}X_n EXn+EXn2EXn+EXn,因此 sup ⁡ n E ∣ X n ∣ < ∞    ⟺    sup ⁡ n E X n + < ∞ \sup_n {\mathbb E}|X_n|<\infty \iff \sup_n{\mathbb E} X_n^+<\infty supnEXn<supnEXn+<(存疑?)

3.9 极大值不等式与 Doob 定理

随机变量序列 { Y n } \{Y_n\} {Yn} 独立同分布,且 E Y n = 0 , E Y n 2 = σ 2 {\mathbb E}Y_n=0,{\mathbb E}Y_n^2=\sigma^2 EYn=0,EYn2=σ2,取 X 0 = 0 , X n = ∑ k ≤ n Y k X_0=0,X_n=\sum_{k\le n} Y_k X0=0,Xn=knYk,对任意 ε > 0 \varepsilon>0 ε>0,有

  • 切比雪夫不等式 ε 2 P ( ∣ X n ∣ > ε ) ≤ n σ 2 \varepsilon^2 P(|X_n|>\varepsilon)\le n\sigma^2 ε2P(Xn>ε)nσ2
  • Kolmogorov不等式 ε 2 P ( max ⁡ 0 ≤ k ≤ n ∣ X k ∣ > ε ) ≤ n σ 2 \varepsilon^2 P(\max_{0\le k\le n} |X_k|>\varepsilon) \le n\sigma^2 ε2P(max0knXk>ε)nσ2

Markov不等式:非负随机变量 X X X,对任意 a > 0 a>0 a>0 a P ( X ≥ a ) ≤ E X aP(X\ge a)\le {\mathbb E}X aP(Xa)EX

Chernoff界:随机变量 X X X ϕ ( t ) = E [ e t X ] \phi(t)={\mathbb E}[e^{tX}] ϕ(t)=E[etX],对任意实数 a > 0 a>0 a>0

  1. t > 0 t>0 t>0 时,有 P ( X ≥ a ) ≤ e − a t ϕ ( t ) P(X\ge a)\le e^{-at}\phi(t) P(Xa)eatϕ(t)
  2. t < 0 t<0 t<0 时,有 P ( X ≤ a ) ≤ e − a t ϕ ( t ) P(X\le a)\le e^{-at}\phi(t) P(Xa)eatϕ(t)

注: E [ e t X ] = 1 + t E X + t 2 2 ! E X 2 + ⋯ {\mathbb E}[e^{tX}]=1+t{\mathbb E}X + \frac{t^2}{2!}{\mathbb E}X^2+\cdots E[etX]=1+tEX+2!t2EX2+,当 X X X 的各阶矩都知道的时候,特征函数也就知道了。

引理 3.3 { X n } \{X_n\} {Xn} 是下鞅, ∀ n ≥ 0 , X n ≥ 0 \forall n\ge0,X_n\ge0 n0,Xn0,则对任何 λ > 0 \lambda>0 λ>0,有 λ P ( max ⁡ 0 ≤ k ≤ n X k > λ ) ≤ E X n \lambda P(\max_{0\le k \le n} X_k>\lambda) \le {\mathbb E}X_n λP(max0knXk>λ)EXn

推论 3.3 { X n } \{X_n\} {Xn} 是鞅,则对任意 λ > 0 \lambda>0 λ>0

  • λ P ( max ⁡ 0 ≤ k ≤ n ∣ X k ∣ > λ ) ≤ E ∣ X n ∣ \lambda P(\max_{0\le k \le n} |X_k|>\lambda) \le {\mathbb E}|X_n| λP(max0knXk>λ)EXn
  • λ P ( max ⁡ 0 ≤ k ≤ n ∣ X k ∣ 2 > λ ) ≤ E ∣ X n ∣ 2 \lambda P(\max_{0\le k \le n} |X_k|^2>\lambda) \le {\mathbb E}|X_n|^2 λP(max0knXk2>λ)EXn2

定理 3.7(Doob) { X k } \{X_k\} {Xk} 是鞅,如果 X k ∈ L p ( P ) , 1 ≤ p < ∞ X_k\in L^p(P),1\le p<\infty XkLp(P),1p<,则
E [ max ⁡ 1 ≤ k ≤ n ∣ X k ∣ p ] ≤ { q p E ( ∣ X n ∣ p ) , p > 1 , q = p / ( p − 1 ) e e − 1 ( 1 + E [ ∣ X n ∣ log ⁡ + ∣ X n ∣ ] ) , p = 1 {\mathbb E}\left[\max_{1\le k\le n} |X_k|^p\right] \le \begin{cases} q^p {\mathbb E}(|X_n|^p), & p>1,q=p/(p-1) \\ \frac{e}{e-1}\left(1+{\mathbb E}[|X_n|\log^+|X_n|] \right), & p=1 \end{cases} E[1knmaxXkp]{qpE(Xnp),e1e(1+E[Xnlog+Xn]),p>1,q=p/(p1)p=1
证明从略。

3.10 Azuma不等式

3.10.1 Azuma不等式

引理 3.4:若随机变量 X X X 满足 E X = 0 {\mathbb E}X=0 EX=0 P ( − α ≤ X ≤ β ) = 1 , α > 0 , β > 0 P(-\alpha \le X\le \beta)=1,\alpha>0,\beta>0 P(αXβ)=1,α>0,β>0,则对任意的凸函数 f ( x ) f(x) f(x) E [ f ( X ) ] ≤ β α + β f ( − α ) + α α + β f ( β ) {\mathbb E}[f(X)]\le \frac{\beta}{\alpha+\beta}f(-\alpha)+\frac{\alpha}{\alpha+\beta}f(\beta) E[f(X)]α+ββf(α)+α+βαf(β)

引理 3.5:对任意参数 k ∈ [ 0 , 1 ] k\in[0,1] k[0,1],有 k e ( 1 − k ) x + ( 1 − k ) e − k x ≤ e x 2 / 8 ke^{(1-k)x}+(1-k)e^{-kx}\le e^{x^2/8} ke(1k)x+(1k)ekxex2/8

证明:略。

定理 3.8(Azuma不等式) { Z n , n ≥ 1 } \{Z_n,n\ge1\} {Zn,n1} 是鞅, μ = E Z n \mu={\mathbb E}Z_n μ=EZn,令 Z 0 = μ Z_0=\mu Z0=μ,并假设存在非负常数 α i , β i , i ≥ 1 \alpha_i,\beta_i,i\ge1 αi,βi,i1,满足条件 − α i ≤ Z i − Z i − 1 ≤ β i -\alpha_i\le Z_i - Z_{i-1} \le \beta_i αiZiZi1βi,则对任意的 n ≥ 1 , a > 0 n\ge1,a>0 n1,a>0

  1. P ( Z n − μ ≥ a ) ≤ exp ⁡ ( − 2 a 2 / ∑ i = 1 n ( α i + β i ) 2 ) P(Z_n-\mu \ge a) \le \exp(-2a^2 / \sum_{i=1}^n (\alpha_i+\beta_i)^2) P(Znμa)exp(2a2/i=1n(αi+βi)2)
  2. P ( Z n − μ ≤ − a ) ≤ exp ⁡ ( − 2 a 2 / ∑ i = 1 n ( α i + β i ) 2 ) P(Z_n-\mu \le -a) \le \exp(-2a^2 / \sum_{i=1}^n (\alpha_i+\beta_i)^2) P(Znμa)exp(2a2/i=1n(αi+βi)2)

证明:先假设 μ = 0 \mu=0 μ=0,对任意的 c > 0 c>0 c>0,则有 P ( exp ⁡ ( c Z n ) ≥ exp ⁡ ( c a ) ) ≤ E [ exp ⁡ ( c Z n ) ] exp ⁡ ( − c a ) P(\exp(cZ_n)\ge \exp(ca))\le {\mathbb E}[\exp(cZ_n)]\exp(-ca) P(exp(cZn)exp(ca))E[exp(cZn)]exp(ca)。令 W n = exp ⁡ ( c Z n ) W_n=\exp(cZ_n) Wn=exp(cZn),那么
E [ W n ∣ Z n − 1 ] = exp ⁡ ( c Z n − 1 ) E [ exp ⁡ ( c ( Z n − Z n − 1 ) ) ∣ Z n − 1 ] ≤ W n − 1 [ β n α n + β n exp ⁡ ( − c α n ) + α n α n + β n exp ⁡ ( c β n ) ] \begin{aligned} {\mathbb E}[W_n | Z_{n-1}] &= \exp(cZ_{n-1}) {\mathbb E}[\exp(c(Z_n-Z_{n-1})) | Z_{n-1}] \\ &\le W_{n-1} \left[ \frac{\beta_n}{\alpha_n+\beta_n}\exp(-c\alpha_n) + \frac{\alpha_n}{\alpha_n+\beta_n}\exp(c\beta_n) \right] \end{aligned} E[WnZn1]=exp(cZn1)E[exp(c(ZnZn1))Zn1]Wn1[αn+βnβnexp(cαn)+αn+βnαnexp(cβn)]
于是有 E W n ≤ E W n − 1 ( β n exp ⁡ ( − c α n ) + α n exp ⁡ ( c β n ) ) / ( α n + β n ) {\mathbb E}W_n \le {\mathbb E}W_{n-1} (\beta_n\exp(-c\alpha_n) + \alpha_n\exp(c\beta_n)) / (\alpha_n+\beta_n) EWnEWn1(βnexp(cαn)+αnexp(cβn))/(αn+βn),再利用引理 3.5 迭代即可证明 E W n ≤ exp ⁡ ( c 2 ∑ i = 1 n ( α i + β i ) 2 / 8 ) {\mathbb E}W_n \le \exp(c^2 \sum_{i=1}^n(\alpha_i+\beta_i)^2/8) EWnexp(c2i=1n(αi+βi)2/8)。取 c = 4 a / ∑ i = 1 n ( α i + β i ) 2 c=4a/\sum_{i=1}^n(\alpha_i+\beta_i)^2 c=4a/i=1n(αi+βi)2 即可得证。第二个不等式可以用零均值的鞅 { Z n − μ } \{Z_n-\mu\} {Znμ} { μ − Z n } \{\mu-Z_n\} {μZn} 得到。

推论 3.8.1:如果向量 X = ( x 1 , x 2 , . . . , x n ) X=(x_1,x_2,...,x_n) X=(x1,x2,...,xn) Y = ( y 1 , y 2 , . . . , y n ) Y=(y_1,y_2,...,y_n) Y=(y1,y2,...,yn) 最多只有一个坐标点不同,也就是说存在一个 k k k 使得 x i = y i , ∀ i ≠ k x_i=y_i,\forall i\ne k xi=yi,i=k。假设存在一个函数 h ( X ) h(X) h(X) 满足条件 ∣ h ( X ) − h ( Y ) ∣ ≤ 1 |h(X)-h(Y)|\le 1 h(X)h(Y)1,假设 X 1 , . . . , X n X_1,...,X_n X1,...,Xn 为独立的随机变量,于是有 P ( h ( X ) − E [ h ( X ) ] ≥ a ) ≤ exp ⁡ ( − a 2 / 2 n ) P(h(X)-{\mathbb E}[h(X)] \ge a) \le \exp(-a^2/2n) P(h(X)E[h(X)]a)exp(a2/2n) P ( h ( X ) − E [ h ( X ) ] ≤ − a ) ≤ exp ⁡ ( − a 2 / 2 n ) P(h(X)-{\mathbb E}[h(X)] \le -a) \le \exp(-a^2/2n) P(h(X)E[h(X)]a)exp(a2/2n)

证明:考虑(Doob)鞅 Z i = E [ h ( X ) ∣ X 1 , . . . , X i ] , i = 1 , 2 , . . . , n Z_i = {\mathbb E}[h(X) | X_1,...,X_i], i=1,2,...,n Zi=E[h(X)X1,...,Xi],i=1,2,...,n,那么有
∣ E [ h ( X ) ∣ X 1 = x 1 , . . . , X i = x i ] − E [ h ( X ) ∣ X 1 = x 1 , . . . , X i − 1 = x i − 1 ] ∣ = ∣ E [ h ( x 1 , . . . , x i , X i + 1 , . . . , X n ) ] − E [ h ( x 1 , . . . , x i − 1 , X i , . . . , X n ) ] ∣ ≤ 1 \big|{\mathbb E}[h(X) | X_1=x_1,...,X_i=x_i] - {\mathbb E}[h(X) | X_1=x_1,...,X_{i-1}=x_{i-1}]\big| = \big|{\mathbb E}[h(x_1,...,x_i,X_{i+1},...,X_n)] - {\mathbb E}[h(x_1,...,x_{i-1},X_{i},...,X_n)]\big| \le 1 E[h(X)X1=x1,...,Xi=xi]E[h(X)X1=x1,...,Xi1=xi1]=E[h(x1,...,xi,Xi+1,...,Xn)]E[h(x1,...,xi1,Xi,...,Xn)]1
因此 ∣ Z i − Z i − 1 ∣ ≤ 1 {|Z_i-Z_{i-1}|} \le 1 ZiZi11,再取 α i = − 1 , β i = 1 \alpha_i=-1,\beta_i=1 αi=1,βi=1 利用 Azuma 不等式即可。

3.10.2 Azuma不等式的推广

引理 3.6:假设 Z n Z_n Zn 是一个零均值的鞅, Z 0 = 0 , − α ≤ Z i − Z i − 1 ≤ β Z_0=0,-\alpha\le Z_i-Z_{i-1}\le\beta Z0=0,αZiZi1β,对所有的 i > 0 i>0 i>0 成立,于是有 P ( Z n ≥ a + b n ) ≤ exp ⁡ ( − 8 a b / ( α + β ) 2 ) P(Z_n\ge a+bn) \le \exp(-8ab / (\alpha+\beta)^2) P(Zna+bn)exp(8ab/(α+β)2),其中 a , b > 0 a,b>0 a,b>0

证明:类似前面 Azuma 不等式的证明,取 W n = exp ⁡ ( c ( Z n − a − b n ) ) W_n = \exp(c(Z_n-a-bn)) Wn=exp(c(Znabn)),那么可以验证 E [ W n ∣ W 1 , . . . , W n − 1 ] ≤ W n − 1 exp ⁡ ( − c b ) exp ⁡ ( c 2 ( α + β ) 2 / 8 ) {\mathbb E}[W_n | W_1,...,W_{n-1}]\le W_{n-1} \exp(-cb) \exp(c^2(\alpha+\beta)^2/8) E[WnW1,...,Wn1]Wn1exp(cb)exp(c2(α+β)2/8),取 c = 8 b / ( α + β ) 2 c=8b/(\alpha+\beta)^2 c=8b/(α+β)2 就可以得到 { W n } \{W_n\} {Wn}上鞅。对于一个固定的正整数 k k k,定义有界停时 τ = min ⁡ { n : Z n ≥ a + b n ,  or  n = k } \tau=\min\{n:Z_n\ge a+bn, \text{ or } n=k\} τ=min{n:Zna+bn, or n=k},于是有 P ( Z τ ≥ a + b τ ) = P ( W τ ≥ 1 ) ≤ E W τ ≤ E W 0 P(Z_{\tau} \ge a+b\tau) = P(W_\tau \ge 1) \le {\mathbb E}W_\tau \le {\mathbb E}W_0 P(Zτa+bτ)=P(Wτ1)EWτEW0,因此有 P ( Z n ≥ a + b n , n ≤ k ) ≤ exp ⁡ ( − 8 a b / ( α + β ) 2 ) P(Z_n\ge a+bn,n\le k) \le \exp(-8ab / (\alpha+\beta)^2) P(Zna+bn,nk)exp(8ab/(α+β)2)。令 k → ∞ k\to\infty k 就得到所需结论,证毕。

定理 3.9:假设 Z n Z_n Zn 是一个零均值的鞅, Z 0 = 0 , − α ≤ Z i − Z i − 1 ≤ β Z_0=0,-\alpha\le Z_i-Z_{i-1}\le\beta Z0=0,αZiZi1β,对所有的 i > 0 i>0 i>0 成立,对任意的正常数 c c c 和正整数 m m m
P ( Z n ≥ c n , n ≥ m ) ≤ exp ⁡ ( − 2 m c 2 / ( α + β ) 2 ) P ( Z n ≤ − c n , n ≥ m ) ≤ exp ⁡ ( − 2 m c 2 / ( α + β ) 2 ) \begin{aligned} P(Z_n\ge cn,n\ge m) &\le \exp(-2mc^2/(\alpha+\beta)^2) \\ P(Z_n\le -cn,n\ge m) &\le \exp(-2mc^2/(\alpha+\beta)^2) \end{aligned} P(Zncn,nm)P(Zncn,nm)exp(2mc2/(α+β)2)exp(2mc2/(α+β)2)
证明:如果存在一个 n n n 满足条件 n ≥ m , Z n ≥ n c n\ge m,Z_n\ge nc nm,Znnc,对这个 n n n Z n ≥ n c ≥ m c / 2 + n c / 2 Z_n\ge nc\ge mc/2 + nc/2 Znncmc/2+nc/2,直接利用引理 3.6 即可得证。

Remark:面对概率放缩问题,首先考虑 Markov 不等式,然后考虑 Chernoff 不等式,然后考虑 Azuma 不等式。

栗子:掷硬币,出现正面的概率为 p p p,抛掷 m m m 次后出现正面的比率与 p p p 相差大于 ε \varepsilon ε 的概率是多少?

解:令 S n S_n Sn 为前 n n n 次抛掷硬币中出现正面的次数,因此需要求解 P ( ∣ S n / n − p ∣ > ε , n ≥ m ) P(|S_n/n - p| > \varepsilon,n\ge m) P(Sn/np>ε,nm)。取 Z n = S n − n p Z_n=S_n-np Zn=Snnp,可以验证 { Z n } \{Z_n\} {Zn} 为零均值的鞅,并且满足 − p ≤ Z n − Z n − 1 ≤ 1 − p -p\le Z_n - Z_{n-1}\le 1-p pZnZn11p,利用推广的 Azuma 不等式就可以得到 P ( Z n ≥ ε n , n ≥ m ) ≤ exp ⁡ ( − 2 m ε 2 ) P(Z_n\ge \varepsilon n,n\ge m)\le \exp(-2m\varepsilon^2) P(Znεn,nm)exp(2mε2)

最后给我的博客打个广告,欢迎光临
https://glooow1024.github.io/
https://glooow.gitee.io/

前面的一些博客链接如下
泛函分析专栏
高等数值分析专栏
随机过程专栏
随机过程1 绪论
随机过程2 平稳过程与二阶矩
离散鞅论1 | 基本概念
离散鞅论2 | 停时与停时定理
离散鞅论3 | 鞅论应用
泊松过程1 | 定义与基本性质
泊松过程2 | 泊松过程扩展
布朗运动 1 | 基本概念与性质
布朗运动 2 | 布朗运动的推广
马尔可夫过程1 | 基本概念
马尔可夫过程2 | 状态空间
连续参数马尔可夫链

  • 0
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值