愁绪千万端,扰乱不成眠——如何修复Noise?

640?wx_fmt=gif

今天我们来介绍一下如何修复ECO阶段的Noise Violation. 首先,我们也来介绍一下什么是Noise。

网上资料很多,大致整理一下,noise(噪声)也称为crosstalk(串扰),signal integrity(信号完整性分析),是随着芯片特征尺寸变小后引发的现象。主要指工艺金属层线变窄,间距变小以后,导致线与线之间的耦合电容(coupling capacitance)增大,接地电容变小(如下图所示)。而Noise的大小与耦合电容成正比,与接地电容成反比。所以导致Noise的影响变大。

640?wx_fmt=jpeg

那么在后端PR中,noise对我们的影响,主要分为两大类:信号的延迟(delay)和毛刺(glitch)。这两类问题都会对芯片的性能产生影响。

Noise与信号延迟

首先我们来讲下noise对信号延迟的影响,在分析noise时,我们将产生noise信号源的网络称为侵害网络(aggressor  net或attacker),受到串扰的网络称为受害网络(victim net)。当aggressor的信号在0 和1之间电平变换时,victim上会产生相应的串扰噪声,这种转换噪声能使victim的信号转换变慢或变快。如果victim受到相同方向跳变的aggressor,会造成它的delay变小;如果victim受到相反方向跳变的aggressor,会造成它的delay变大。

如下图所示:Net N1作为victim,与Aggressor有Cc的耦合电容。假设Net N1正在0~1发生跳变。如果aggressor也在发生0~1的跳变,那么它的上升沿会耦合到N1上面,会造成N1的delay变小;如果aggressor正在发生1~0的跳变,那么它的下降沿作用到N1上时,该信号转换变慢,会造成它的delay变大。

640?wx_fmt=jpeg

Noise虽然会对信号延迟产生影响,恶化时序。但是,如果在它影响下,时序依然可以signoff,那么我们可以不必去修复它。

Noise与毛刺

Noise引发的另一种现象,我们称为毛刺(Glitch)。如下图所示,当victim net受到aggressor net跳变影响时,就会有毛刺信号通过耦合电容引入。

640?wx_fmt=jpeg

如下图所示,有时候,这个毛刺信号比较小,可以忽略;但是,当毛刺信号足够高而且持续时间较长,这就有可能导致逻辑功能发生变化,破坏了门电路所保存的状态,使得电路发生故障。因此,在最后timing signoff中,noise引起的glitch是我们必须要修复的violation。

640?wx_fmt=jpeg

那么,在后端PR中,如何来修复Glitch呢?

有很多方法,下面列举几种;

(1)降低aggressor net的驱动能力

aggressor net的驱动能力越强,Glitch的量级就越大。

(2)增强victim net的驱动能力

victim net驱动能力越弱的话,Glitch的量级也会越大。使用髙驱动单元可提髙潜在victim net的门限,从而降低victim net的受害程度。

(3)保护victim net

将victim net和aggressor net之间的间距加大,或者采用屏蔽线shielding都是保护victim net的一些好方法。

(4)给victim net插入Buffer

插buffer是后端修复violation的万能手段。它也是是处理noise时一项非常有效的修复技术。通过插入buffer将长线打断能有效降低victim net上的耦合电容,从而降低noise的影响。


640?wx_fmt=jpeg

往期回顾

简历请戳邮箱:taozhang3260@163.com

<think>嗯,用户问的是如何在Testbench中构造不同验证场景(verif场景)对DDR读写眼图的影响。首先,我需要理解用户的问题。DDR的读写眼图是评估信号完整性的重要指标,验证场景的不同可能涉及不同的信号激励、时序参数或环境干扰。用户可能在做DDR控制器的验证,需要分析不同测试条件对眼图的影响,进而优化设计。 首先,我应该回忆一下DDR验证的基本概念。眼图是通过示波器观察信号在不同时间点的电压变化,用来判断信号的抖动、噪声和时序余量。在Testbench中,为了构造不同的验证场景,可能需要调整时钟频率、数据模式、信号抖动、噪声注入、负载条件等参数。 接下来,用户提到的“vcs前方”可能是指VCS仿真工具的前流程,或者是验证环境中的某些特定步骤。需要确认这个术语的具体含义,但根据上下文,可能是指验证环境中的测试场景构造部分。 那么,如何在Testbench中构造不同场景呢?首先,需要建立DDR模型,包括控制器和PHY层的行为模型,可能还需要内存模型。然后,通过改变测试参数来模拟不同的工作条件。比如,改变时钟的抖动、数据速率、引入串扰或噪声,改变温度和电压条件等。 不同的验证场景可能包括:正常操作条件下的眼图、高频下的极限测试、低电压情况下的信号完整性、存在噪声或串扰时的眼图闭合情况等。每个场景需要对应的激励生成和参数配置。 接下来,需要考虑如何在Testbench中实现这些变化。可能需要使用SystemVerilog的约束随机测试方法,通过调整约束条件来生成不同的数据模式或时序参数。此外,可能会用到模拟噪声注入,比如在信号上叠加随机抖动或周期性干扰。 对于眼图的生成和分析,通常需要收集足够多的数据跳变边沿,然后在仿真后处理中生成眼图。这可能需要在Testbench中记录信号的时序和电压信息,再使用脚本或工具(如Python或MATLAB)进行后处理,生成眼图并分析眼高、眼宽等参数。 可能的挑战包括如何准确建模DDR的时序要求,如何高效地注入各种干扰因素,以及如何自动化不同测试场景的生成和分析。此外,还需要确保Testbench的配置足够灵活,能够快速切换不同的验证场景,便于比较不同条件下的眼图变化。 用户可能需要具体的实现步骤,比如如何调整时钟频率,如何注入抖动,如何配置不同的数据模式等。因此,回答中需要分步骤说明这些方法,并结合实际例子,比如使用SystemVerilog的代码片段来展示如何修改测试参数。 还需要注意,不同的DDR版本(如DDR3、DDR4、LPDDR)可能有不同的时序要求和信号特性,因此在构造Testbench时需要根据具体规范调整参数。此外,验证环境可能需要集成第三方VIP(Verification IP)来模拟真实的DDR行为,确保测试的准确性。 总结来说,构造不同验证场景的关键在于灵活配置Testbench中的信号激励、时序参数和干扰因素,然后通过仿真和后处理分析眼图的变化。需要结合具体的验证目标和DDR规范来设计测试用例,确保覆盖各种可能的操作条件和边缘情况。</think>在Testbench中构造不同验证场景分析DDR读写眼图的影响,需要分步骤控制关键参数。以下是系统化的实现方法: 一、基础环境搭建 1. 建立DDR控制器+PHY行为模型 $$ y_{DQ}(t) = \sum_{n} a_n \cdot h(t - nT - \Delta t_n) + \eta(t) $$ 其中$T$为时钟周期,$\Delta t_n$为时序抖动,$\eta(t)$为噪声分量 2. 配置标准DDR时序参数: ```systemverilog ddr_cfg.tCK = 1.56ns; // DDR4-3200 ddr_cfg.tDQSCK = 75ps; ddr_cfg.tDS/tDH = 25ps; ``` 二、关键场景构造方法 1. 时序扰动场景: ```systemverilog // 注入随机抖动 task apply_jitter(ref clock, input real max_jitter); automatic real jitter = $urandom_range(-max_jitter, max_jitter); #((clock.period/2) + jitter); endtask // 示例:±50ps抖动 fork apply_jitter(ddr_clk, 0.05ns); join_none ``` 2. 噪声注入场景: ```systemverilog // 添加高频噪声 real noise_amplitude = 0.1*vddq; assign dq = ideal_dq + noise_amplitude*$random(); // 突发噪声模型 if (burst_error_en) begin force dq = $dist_uniform(seed, 0, 1) ? vddq : 0; #10ns release dq; end ``` 3. 负载变化场景: ```systemverilog // 动态调整ODT case(test_mode) LIGHT_LOAD: odt = 40ohm; HEAVY_LOAD: odt = 60ohm; endcase // 传输线模型参数化 ddr_channel.set( .Z0(50±10%), .td(100ps/inch), .length_variation(±5%) ); ``` 三、眼图分析方法 1. 数据采集: ```systemverilog $dumpfile("ddr_eye.vcd"); $dumpvars(0, dq_group); ``` 2. 后处理脚本示例(Python): ```python import matplotlib.pyplot as plt from signal_analysis import eye_diagram samples = load_vcd("dq0.vcd") eye = eye_diagram(samples, period=1.56e-9) plt.figure(figsize=(12,6)) eye.plot_eye(color_map='viridis') plt.title(f"Jitter={jitter}ps, Noise={noise}mV") plt.savefig(f"eye_j{test_num}.png") ``` 四、典型验证场景对照表 | 场景类型 | 影响参数 | 预期眼图变化 | |----------------|---------------------------|------------------------| | 极限频率 | tCK减小10% | 眼宽收窄,水平压缩 | | 电压波动 | VDDQ ±5% | 眼高变化,对称性破坏 | | 串扰耦合 | 相邻DQ线同步翻转 | 眼图边缘出现毛刺 | | 温度漂移 | 模型温度系数+100ppm/℃ | 眼中心位置偏移 | | 时序参数违例 | tDS/tDH超出规格 | 眼图开合度显著降低 | 五、验证结果分析方法 1. 量化指标计算: $$ 眼高 = \max(V_{low}) - \min(V_{high}) $$ $$ 眼宽 = t_{valid} @ 50% V_{pp} $$ $$ 抖动容限 = \frac{t_{eye} - t_{setup/hold}}{t_{unit}} \times 100\% $$ 2. 通过准则: - 眼高应 > 0.6V(针对1.2V VDDQ) - 眼宽应覆盖 > 70% UI - 误码率 < 1e-12 建议采用约束随机验证方法,通过回归测试覆盖工艺角、电压温度条件组合。实际项目中建议配合IBIS-AMI模型进行协同仿真验证。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值