论文浅尝 | MISC:融合COMET的混合策略模型进行情感支持对话

论文提出MISC模型,结合COMET获取用户精细心理状态,通过混合策略响应生成,改善情感支持对话。实验表明,MISC在准确预测响应策略和提供具体信息方面优于其他SOTA模型。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

fbd552b43bc7a29cad111d55aa77c600.png

笔记整理:朱益鹏,东南大学硕士,研究方向为知识图谱问答、自然语言处理。

论文引用:Tu, Q. ,  Li, Y. ,  Cui, J. ,  Wang, B. ,  Wen, J. R. , &  Yan, R. . (2022). Misc: a mixed strategy-aware model integrating comet for emotional support conversation.

动机

在以前的工作中,情感对话往往依赖的是对话级别的情感标签类似负面/正面,但这种情感标签往往粒度太粗无法捕捉用户丰富的情感。除此以外这类情感对话也无法真正减少用户的痛苦,而仅仅注重表达出对用户情感的回应。 

为了解决这些局限,有一些情感对话模型会使用高兴、愤怒等这类更加细致的标签,甚至在此基础上加上程度或分数来进一步细粒度的表现情感。而真正关注减少用户的痛苦的模型很少。

文章提出了一种融合COMET的情感对话模型(A MIxed Strategy-Aware Model Integrating COMET for Emotional Support Conversation,MISC)来解决以上两种局限,在本文中认为用户情绪是复杂的,用户的情绪强度将在对话的发展过程中发生变化因此,有必要在每次对话时获得用户的精细心理状态。为此集成了COMET到情感对话中,使用不同的COMET元组捕捉用户的瞬时心理状态。而为了解决第二个问题,本文通过将反应策略建模成one-hot,并将其表示为不同策略的概率分布一次来进行混合策略的响应生成。

贡献

文章的贡献有:

(1)提出了一个Seq2Seq框架MISC,该框架将常识知识和混合反应策略融入情感支持对话中;

(2)在ESConv数据集上进行了实验,并通过与其他SOTA方法

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值