笔记整理:朱益鹏,东南大学硕士,研究方向为知识图谱问答、自然语言处理。
论文引用:Tu, Q. , Li, Y. , Cui, J. , Wang, B. , Wen, J. R. , & Yan, R. . (2022). Misc: a mixed strategy-aware model integrating comet for emotional support conversation.
动机
在以前的工作中,情感对话往往依赖的是对话级别的情感标签类似负面/正面,但这种情感标签往往粒度太粗无法捕捉用户丰富的情感。除此以外这类情感对话也无法真正减少用户的痛苦,而仅仅注重表达出对用户情感的回应。
为了解决这些局限,有一些情感对话模型会使用高兴、愤怒等这类更加细致的标签,甚至在此基础上加上程度或分数来进一步细粒度的表现情感。而真正关注减少用户的痛苦的模型很少。
文章提出了一种融合COMET的情感对话模型(A MIxed Strategy-Aware Model Integrating COMET for Emotional Support Conversation,MISC)来解决以上两种局限,在本文中认为用户情绪是复杂的,用户的情绪强度将在对话的发展过程中发生变化因此,有必要在每次对话时获得用户的精细心理状态。为此集成了COMET到情感对话中,使用不同的COMET元组捕捉用户的瞬时心理状态。而为了解决第二个问题,本文通过将反应策略建模成one-hot,并将其表示为不同策略的概率分布一次来进行混合策略的响应生成。
贡献
文章的贡献有:
(1)提出了一个Seq2Seq框架MISC,该框架将常识知识和混合反应策略融入情感支持对话中;
(2)在ESConv数据集上进行了实验,并通过与其他SOTA方法