#MISC: A MIxed Strategy-Aware Model Integrating COMET for Emotional Support Conversation
##MISC:整合COMET的混合策略意识模型
数据集ESConv
文件夹20230301(已演示)
MISC:整合COMET的混合策略意识模型
将现有的方法应用于情感支持对话——为有需要的人提供了有价值的帮助——有两个主要的局限性:(1)它们通常采用对话级的情感标签,粒度太粗,无法捕捉用户的即时心理状态;(b)大多数都专注于在回应中表达同理心,而不是逐步减少用户的痛苦。为了解决这些问题,我们提出了一种新的模型MISC,该模型首先推断出用户的细粒度情绪状态,然后使用混合策略进行巧妙的响应。在基准数据集上的实验结果证明了我们的方法的有效性,并揭示了细粒度情感理解和混合策略建模的好处。我们的代码和数据可以在中找到。
同理心是一种感知他人感受、换位思考并做出恰当反应的能力。赋予机器共情能力具有广泛的应用场景,包括自动心理治疗师、智能客户服务、共情会话代理等(Fitzpatrick et al., 2017;Shin等人,2019;Ma等人,2020年)。
在这项工作中,我们关注一种特殊的人机共情对话,即情感支持对话(Liu et al., 2021)。
情感支持对话发生在寻求者和支持者之间,支持者的目标是随着对话的进行逐渐减少寻求者的痛苦。这使得现有的方法不适合我们的环境,至少有两个原因。首先,现有的情感聊天工作学会了使用对话级别的情感标签来预测用户的情绪,这是粗粒度和静态的会话上下文(拉什金等人,2019;林等人,2019c;Li等人,2020a)。然而,情绪是复杂的,在对话的发展过程中,用户的情绪强度会发生变化(Liu et al., 2021)。因此,有必要在每句话语中都要告诉探求者细致的精神状态。其次,大多数有同理心的聊天机器人都经过训练,按照预测的粗粒度情感类进行情感响应,而没有考虑如何解决探索者的情感问题(De Graaf et al., 2012;Majumder等人,2020年;谢和朴,2021年)。因此,他们缺乏申请情感支持对话的能力,而情感支持对话的目的是帮助他人度过他们所面临的挑战。
为了解决这些问题,我们提出了一种新的方法MISC,即混合策略感知模型集成COMET用于情感支持对话。针对第一个问题,我们引入了一种预训练生成常识推理模型COMET (Bosselut等人,2019a),并设计了一种注意机制,选择性地采用COMET知识元组进行细粒度的情感理解。如图1所示,这允许我们使用不同的COMET元组捕获搜索者的瞬时精神状态。此外,我们建议在生成第二个问题的共情反应时也考虑反应策略。而不是将响应策略建模为单一热点指标,我们将其制定为策略码本上的概率分布,并使用混合策略指导响应生成。最后,我们的MISC基于comet增强的心理信息和分布式策略表征产生支持性反应。混合策略的独特设计,不仅有助于增加表达的共情,还有助于学习长反应中的渐进过渡,如图1中的最后一句话,从而使对话更加流畅。
为了评估我们的模型,我们在ESConv基准上进行了广泛的实验(Liu等人,2021年),并与5个最先进的同理心聊天机器人进行了比较。基于自动度量和人工判断,我们证明由模型MISC生成的响应更相关和更有同理心。此外,进一步的实验分析揭示了响应策略建模的重要性,揭示了如何学习合适的响应策略以及响应策略如何影响聊天机器人的共情。
简单地说,我们的贡献如下:(1)我们提出了一个Seq2Seq模型MISC,它将常识知识和混合反应策略融入到情感支持对话中;(2)在ESConv数据集上进行了实验,并通过与其他SOTA方法的比较,验证了所提MISC方法的有效性。(3)采用不同的策略建模方法,对策略意识的情感支持对话进行了提示。
2相关工作
2.1情感感知的反应生成
Liu等人(2021)提出,情感感知对话系统可分为三类:情感聊天、同理心回应和情感支持对话。早期工作以情感聊天为目标,依赖情感信号(Li et al., 2017;周等,2018a;魏等,2019;周和王,2018;宋等人,2019)。后来,一些研究人员将注意力转移到激发用户的特定情感上(Lubis et al., 2018;Li等人

最低0.47元/天 解锁文章
1715

被折叠的 条评论
为什么被折叠?



