论文浅尝 | 简单高效的基于关系的嵌入传播方法用于知识表示学习

5909a1a022d5a37e834f66d56dd09901.png

笔记整理:郭荣辉,天津大学硕士

链接:https://www.ijcai.org/proceedings/2022/382

动机

基于三元组的方法(如TransE等)通常将关系视为实体嵌入空间上的操作。由于其优雅的简洁性和良好的可解释性,可以快速扩展到大型知识图谱(KGs)。然而,基于三元组的方法忽略了全局近邻信息。最近,图神经网络对知识图谱上下文进行建模得到了大量研究,其通过实体和关系的连接关系聚合嵌入来更新中心实体。因此,时间复杂度与三元组的数量和实体的平均度成正比,这阻碍了它们在大规模真实任务上的应用。如何在大型KGs中高效有效地利用图上下文仍然是一个挑战。为此,本文提出了基于关系的嵌入传播( REP )方法。它是一种将预先训练好的KGs嵌入与图上下文相适应的后处理技术,同时兼顾了简洁性和有效性。大量实验也表明,REP在提高或保持预测质量的同时具有显著的可扩展性。

亮点

本文的亮点主要包括:

1.通过设计没有反向传播的无参数嵌入传播,REP在利用图上下文时变得计算高效和简单;2.为了避免在KGs中嵌入传播过程中的信息失真,我们使用不同的三元组假设来纳入有价值的关系,以便REP能够保持或大幅提高预测质量;3.所提出的REP具有显著的可扩展性,在大型KGs上达到相当的性能的同时需要较少的时间,有希望得到实际应用。

概念及模型

整体框架如下图所示,REP包括:(1) 关系图上下文高效且有效地聚合特定关系的邻居信息;(2)实体自适应根据预训练和上下文嵌入计算新的嵌入表示。

09f7c70addaddd26315bd716a27d67ed.png

•基于关系的上下文函数

知识图谱中的异质关系在理解实体意义方面起着至关重要的作用。基于三元组的方法通常将关系作为实体之间的操作,例如加法、乘法、旋转和正交变换。因此,在传播过程中忽略关系会带来信息失真。我们根据他们的假设设计关系情境函数,以与预训练的嵌入保持一致。有两种语境:

1.头图上下文:包含中心实体e的传入头关系对,其中e充当尾部实体。2.尾图上下文:由连接到中心实体的所有外向尾关系对组成。

本文选择了四种典型的基于三元组的方法,它们分别将关系视为加法、乘法、旋转变换和正交变换,并在表1中定义了相应的上下文函数。

13007f2c98a6ff6be41c8fad84cd7ca4.png

•上下文聚合

上下文聚合旨在结合邻居信息。由于本工作旨在提高基于图上下文的方法的可扩展性,这里使用平均进行聚合信息,这有助于使嵌入保持在相同的尺度上。头实体上下文嵌入可以表示为:

af6e20fd1d94930c480c73697e8861a1.png

尾实体上下文嵌入可以表示为:

e96de06317ed47aeeca996608430aa15.png

•实体自适应

本文使用一个更新标量α∈[0,1)来平衡预训练的三元组信息和图上下文信息之间的权重。最后的实体嵌入计算:

47e7e05f216fd789df6a9c3cdb4fda58.png

上式中,e^0为预训练的实体嵌入。特别地,这里不使用梯度下降算法更新参数,而是直接使用计算结果进行链路预测。由于关系数量相对较少,我们固定了预先训练好的异构关系的嵌入。

理论分析

本文从参数更新的角度给出了理论分析。通常,基于三元组的方法从其得分函数f_r (h,t)开始,通过最小化基于边际排序准则来学习嵌入:

930baf6c6401d506df6e4437330d8eb9.png

标准的随机梯度下降算法可表示为:

9dd363a8d605d359f8e18b6df36de2ee.png

基于边际的排序准则背后的动机是通过扩大到负样本的距离,使得有效的三元组具有较高的得分。因此,当嵌入被该准则完全优化时,有效三元组和负样本之间的距离达到局部最优。

这里证明我们的REP通过最大化有效三元组的得分进一步改进了目标L。不失一般性,以TransE为例。最大化有效三元组的分数的目标表述为:

fe830ce395c4f5e2f0f13f79574f74e6.png

假设参数通过随机梯度下降法更新,首先计算h_i的偏导数,如公式所示:

fde296367127ad56b2ceff2fd23c3ff1.png

在这种情况下,对头实体采用随机梯度下降算法参数更新可改写为:

a669e926d8646f9862900a57beaca454.png

令a=1-2β,此更新函数等价于实体自适应更新。

类似的,对尾实体,有:

a7065f1e535338993e813259dba09427.png

最重要的是,REP与使用随机梯度下降最大化有效三元组得分一样,进一步优化了基于三元组的预训练嵌入目标。

实验

本文使用了四个不同尺度的数据集,如下表所示。

cd4d7be09ce3d0971bb7ee81a7cbc438.png

•简洁性分析

对于模型参数,REP除了实体和关系的嵌入外不需要任何参数,而基于上下文的方法继承了GNNs,除了嵌入外还需要多个特定层的权重矩阵。对于计算复杂度,作者进行了速度实验来比较REP - OTE和GC - OTE。GC - OTE也不需要外部参数。理论上,REP - OTE和GC - OTE具有相同的时间复杂度。但由于REP没有后向传播,其计算远小于GC - OTE。表3中的加速比数据从实证上证明了这一点。

7a566ff2d8daf979e3e822d6b0ab299c.png

•有效性分析

中等和大数据集的结果报告在表4中。REP增强方法在所有指标上表现最好。在小数据集上的结果报告在表5中。在这种情况下,REP - OTE优于所有基于三元组的方法,并且具有与最先进的基于上下文的方法相当的预测质量。综上所述,REP可以为基于三元组的方法带来稳定的改进,并以更少的代价获得与基于上下文的方法相当的性能。

aa74df164cdbaf272a1cfe4e615703d6.png

总结

本文提出了新的方法REP,在后训练过程中利用KGs中的图上下文。其关键思想是将关系图结构信息纳入预训练的基于三元组的嵌入中。为了简化,REP使用局部平均法来进行非参数嵌入传播,而不进行反向传播。为了提高效率,REP分别为头部相关邻域和尾部相关邻域设计了图上下文函数。因此,REP可以在KGs的嵌入传播过程中减少信息失真。此外,这样的设计也给REP带来了良好的可扩展性,这对于在现实世界中利用图上下文的大型KGs具有实际意义。


OpenKG

OpenKG(中文开放知识图谱)旨在推动以中文为核心的知识图谱数据的开放、互联及众包,并促进知识图谱算法、工具及平台的开源开放。

01141240b2d5a8ee9f579917b028a318.png

点击阅读原文,进入 OpenKG 网站。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值