问题解析规范化
机器学习定义
感知机:线性加权分类
类比常见的加权平均和线性组合形成分类门限值
PLA:基于实例的学习,错误反馈纠正
每次迭代选择误分类样本更新权值,直到便利样本未发现误分类点
- 线性可分
- 结果收敛(单步优化,且存在上限,迭代优化次数也就有限)
POCKET算法
随机样本点优化,收敛速度慢于PLA
- 存在噪声数据时,对PLA的一种近似,通过足够多次随机迭代逼近特征函数
类比常见的加权平均和线性组合形成分类门限值
每次迭代选择误分类样本更新权值,直到便利样本未发现误分类点
随机样本点优化,收敛速度慢于PLA
- 存在噪声数据时,对PLA的一种近似,通过足够多次随机迭代逼近特征函数