古诺模型:市场一共两个参与者
他们的策略就是商品的产量(假设商品都是同质化,也就是一模一样的),设为,如
,
生产1单位的成本为c
生产成本就是
如何制定市场价格呢
价格由如下因素决定:两个参数和
核心思想是两家企业生产越多,商品的市场价格就越低
画图(下图被称为需求曲线):
横坐标表示总产量,纵坐标
表示市场价格,截距为
,斜率为
是给定的价格,曲线就是对应的需求量
对于公司1来说,它的利润(收益-成本)为
将需求曲线的公式
代入,替换P
就可以得到公司1的利润表达式,同理也可以求出公司2的表达式
下面如何求出纳什均衡?
我们可以求出参与人1对于2不同产量下的最佳产量,以及参与人2对于1不同产量下的最佳产量(说人话就是对2的每一种选择都找到1在此条件下的最优选择,然后所有的选择连成一条线就是一的曲线)
思路很简单,我们只需要对中的
求导,求二阶导是为了验证确实存在最大值
BR(q2)的图像为
当取0时,
的产量就是
放到下图里就是成本线和原先曲线的交点,当处于此状态时,如果继续生产,会使点沿曲线右移,会使市场价格低于成本,导致亏本
同理,我们可以用红色的笔画出在的不同选择下
的最佳应对策略,两条线的交点就是他们的纳什均衡,也就是古诺产出
这不是策略互补博弈,而是策略替代博弈,换句话说,一方增加,另一方就要减少
三点都达到了市场利润最高,但是双方无法达成协议去保持
点的产量,因为总会有一方偷偷改变产量使之达到纳什均衡,最终仍然会回到交点
即使不考虑偷偷违约,在点会吸引新加入者,最终导致新的竞争