古诺模型里的纳什均衡

古诺模型描述了两个寡头企业在同质化商品市场中的竞争。每个企业的利润最大化策略是根据对方的产量决定自身产量。市场价格由总产量决定,且随着产量增加而下降。纳什均衡是双方都无法单方面改变策略以提高利润的状态,即两个企业的产量在成本线与需求曲线交点处。然而,这种均衡可能不稳定,因为企业可能会试图偏离均衡以获取更多利润,导致新竞争者的进入。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

古诺模型:市场一共两个参与者

他们的策略就是商品的产量(假设商品都是同质化,也就是一模一样的),设为q_{i},如q_{1},q_{2}

生产1单位的成本为c

生产成本就是

c*q_{i}

如何制定市场价格呢

价格由如下因素决定:两个参数ab

核心思想是两家企业生产越多,商品的市场价格就越低

画图(下图被称为需求曲线):

横坐标q_{1}+q_{2}表示总产量,纵坐标P表示市场价格,截距为a,斜率为-b

P是给定的价格,曲线就是对应的需求量

对于公司1来说,它的利润(收益-成本)为

U(q_{1},q_{2})=P*q_{1}-c*q_{1}

将需求曲线的公式

P=a-b(q_{1}+q_{2})

代入,替换P 

就可以得到公司1的利润表达式,同理也可以求出公司2的表达式

U=a*q_{1}-b*q_{1}^{2}-b*q_{1}*q_{2}-c*q_{1}

下面如何求出纳什均衡?

我们可以求出参与人1对于2不同产量下的最佳产量,以及参与人2对于1不同产量下的最佳产量(说人话就是对2的每一种选择都找到1在此条件下的最优选择,然后所有的选择连成一条线就是一的曲线

思路很简单,我们只需要对U中的q_{1}求导,求二阶导是为了验证确实存在最大值

BR(q2)的图像为

q_{1}取0时,q_{2}的产量就是

(a-c)/b

放到下图里就是成本线和原先曲线的交点,当处于此状态时,q_{1}如果继续生产,会使点沿曲线右移,会使市场价格低于成本,导致亏本

同理,我们可以用红色的笔画出在q_{1}的不同选择下q_{2}的最佳应对策略,两条线的交点就是他们的纳什均衡,也就是古诺产出

这不是策略互补博弈,而是策略替代博弈,换句话说,一方增加,另一方就要减少

A B C三点都达到了市场利润最高,但是双方无法达成协议去保持B点的产量,因为总会有一方偷偷改变产量使之达到纳什均衡,最终仍然会回到交点

即使不考虑偷偷违约,在B点会吸引新加入者,最终导致新的竞争

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值