高等数学学习笔记——第二十二讲——导数的概念

本文深入探讨微积分中导数的概念,从微分学的产生背景到导数的定义及其几何意义,再到导数在生活中的应用实例,如儿童滑梯的处处可导性。文章还介绍了求导数的基本方法,并通过示例解析了常值函数、二次抛物线函数、反比例函数的导数计算。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 

1. 问题导入——微分学的产生背景(解决瞬时速度、加速度、曲线切线等相关问题)

 

2. 微积分是微分学和积分学的总称,由牛顿和莱布尼兹在研究物理和几何问题的过程中,总结前人的经验,于十七世纪后期建立起来的

 

3. 问题求解1——求变速直线运动的瞬时速度

 

4. 问题求解2——求曲线的切线(问题1与2的共性:函数增量与自变量增量之比的极限)

 

5. 导数的定义

 

7. 导数的几何意义

 

8. 函数在某处可导的充要条件是它在该处的左、右导数存在且相等

 

9. 可导必连续,连续不一定可导

 

10. 可导在生活中的应用实例——儿童滑梯处处可导(曲线处处有明确的延伸方向)

 

11. 导函数(导数)的定义

 

12. 使用定义求导函数示例(常值函数、二次抛物线函数、反比例函数)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值