-
划分
划分(Partition), A 1 , A 2 , . . . , A n A_1,A_2,...,A_n A1,A2,...,An是空间 Ω \Omega Ω的划分(Partition),如果满足
{ A i ⋂ A j = ∅ ⋃ i = 1 n = Ω \begin{cases}A_i \bigcap A_j = \emptyset \\ \bigcup^n_{i=1}=\Omega \end {cases} { Ai⋂Aj=∅⋃i=1n=Ω划分指的是样本空间中的一组子集,彼此间没有交集,且所有自己的并构成整个样本空间。
-
全概率公式
概念准备: A 1 , A 2 , . . . , A n A_1,A_2,...,A_n A1,A2,...,An是空间 Ω \Omega Ω的划分(Partition)
全概率公式(Total Probability Formula):
P ( B ) = ∑ i = 1 n P ( B ∣ A i ) P ( A i ) P(B) = \sum^n_{i=1}P(B|A_i)P(A_i) P(B)=i=1∑nP(B∣Ai)P(Ai)证明:
( B ⋂ A i ) (B\bigcap A_i) (B⋂
划分,全概率公式,贝叶斯公式证明
最新推荐文章于 2022-11-04 12:58:19 发布