贝叶斯公式的理解及简单推导

1. 贝叶斯概念理解

如下为贝叶斯公式,其中P(A)为事件A的先验概率,P(A|B)为事件A的后验概率,且后验概率的计算融合了先验概率的值。
P ( A ∣ B ) = P ( B ∣ A ) ∗ P ( A ) P ( B ) P(A|B)=\frac{P(B|A)*P(A)}{P(B)} P(AB)=P(B)P(BA)P(A)这里的事件B可以理解为证据,事件A可以理解为待推理的事件,后验概率P(A|B)是在给出事件B作为证据的基础上,对P(A)值的推理更新。

  • 对贝叶斯的理解:根据数据或信息的更新,对事件发生的可能性进行重新估计。

2. 贝叶斯公式推导

在推导贝叶斯公式之前,首先需要了解条件概率公式
P ( A ∣ B ) = P ( A B ) / P ( B ) P(A|B)=P(AB)/P(B) P(AB)=P(AB)/P(B)其中,P(AB)为A和B同时发生的概率,且有:
P ( A B ) = P ( A ∣ B ) ∗ P ( B ) P(AB)=P(A|B)*P(B) P(AB)=P(AB)P(B) = P ( B ∣ A ) ∗ P ( A ) =P(B|A)*P(A) =P(BA)P(A)

做简单的等式变换,P(B)除过来,直接得到贝叶斯公式,如下:
P ( A ∣ B ) = P ( B ∣ A ) ∗ P ( A ) P ( B ) P(A|B)=\frac{P(B|A)*P(A)}{P(B)} P(AB)=P(B)P(BA)P(A)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值