1. 贝叶斯概念理解
如下为贝叶斯公式,其中P(A)为事件A的先验概率,P(A|B)为事件A的后验概率,且后验概率的计算融合了先验概率的值。
P
(
A
∣
B
)
=
P
(
B
∣
A
)
∗
P
(
A
)
P
(
B
)
P(A|B)=\frac{P(B|A)*P(A)}{P(B)}
P(A∣B)=P(B)P(B∣A)∗P(A)这里的事件B可以理解为证据,事件A可以理解为待推理的事件,后验概率P(A|B)是在给出事件B作为证据的基础上,对P(A)值的推理更新。
- 对贝叶斯的理解:根据数据或信息的更新,对事件发生的可能性进行重新估计。
2. 贝叶斯公式推导
在推导贝叶斯公式之前,首先需要了解条件概率公式:
P
(
A
∣
B
)
=
P
(
A
B
)
/
P
(
B
)
P(A|B)=P(AB)/P(B)
P(A∣B)=P(AB)/P(B)其中,P(AB)为A和B同时发生的概率,且有:
P
(
A
B
)
=
P
(
A
∣
B
)
∗
P
(
B
)
P(AB)=P(A|B)*P(B)
P(AB)=P(A∣B)∗P(B)
=
P
(
B
∣
A
)
∗
P
(
A
)
=P(B|A)*P(A)
=P(B∣A)∗P(A)
做简单的等式变换,P(B)除过来,直接得到贝叶斯公式,如下:
P
(
A
∣
B
)
=
P
(
B
∣
A
)
∗
P
(
A
)
P
(
B
)
P(A|B)=\frac{P(B|A)*P(A)}{P(B)}
P(A∣B)=P(B)P(B∣A)∗P(A)