线性回归

1、 线性回归的原理

1.1 线性回归应用场景

房价预测
销售额度预测
金融:贷款额度预测、利用线性回归以及系数分析因子

1.2 什么是线性回归

1.2.1定义与公式

线性回归(Linear regression)是利用回归方程(函数)对一个或多个自变量(特征值)和因变量(目标值)之间关系进行建模的一种分析方式。

特点:只有一个自变量的情况称为单变量回归,大于一个自变量情况的叫做多元回归

在这里插入图片描述

1.2.2 线性回归的特征与目标的关系分析

线性回归当中的关系有两种,一种是线性关系,另一种是非线性关系。在这里我们只能画一个平面更好去理解,所以都用单个特征举例子。

线性关系:
在这里插入图片描述

注释:如果在单特征与目标值的关系呈直线关系,或者两个特征与目标值呈现平面的关系

更高维度的我们不用自己去想,记住这种关系即可

非线性关系:
在这里插入图片描述

注释:为什么会这样的关系呢?原因是什么?
我们后面 讲解过拟合欠拟合重点介绍(欠拟合导致的!)
如果是非线性关系,那么回归方程可以理解为:w1x1+w2x22+w3x32

2、线性回归的损失和优化原理

假设有个房子,真实的数据之间存在这样的关系

真实关系:真实房子价格 = 0.02×中心区域的距离 + 0.04×城市一氧化氮浓度 + (-0.12×自住房平均房价) +0.254×城镇犯罪率

那么现在呢,我们随意指定一个关系(猜测)

随机指定关系:预测房子价格 = 0.25×中心区域的距离 + 0.14×城市一氧化氮浓度 + 0.42×自住房平均房价 +0.34×城镇犯罪率

请问这样的话,会发生什么?真实结果与我们预测的结果之间是不是存在一定的误差呢?类似这样样子
在这里插入图片描述
那么存在这个误差,我们将这个误差给衡量出来

2.1 损失函数

总损失定义为:
在这里插入图片描述

  1. y_i为第i个训练样本的真实值
  2. h(x_i)为第i个训练样本特征值组合预测函数
  3. 又称最小二乘法

如何去减少这个损失,使我们预测的更加准确些?既然存在了这个损失,我们一直说机器学习有自动学习的功能,在线性回归这里更是能够体现。这里可以通过一些优化方法去优化(其实是数学当中的求导功能)回归的总损失!!!

2.2 优化算法

如何去求模型当中的W,使得损失最小?(目的是找到最小损失对应的W值)
线性回归经常使用的两种优化算法
方法1:正规方程

理解:X为特征值矩阵,y为目标值矩阵。直接求到最好的结果
缺点:当特征过多过复杂时,求解速度太慢并且得不到结果


方法2:梯度下降(Gradient Descent)
在这里插入图片描述

理解:α为学习速率,需要手动指定(超参数),α旁边的整体表示方向
沿着这个函数下降的方向找,最后就能找到山谷的最低点,然后更新W值
使用:面对训练数据规模十分庞大的任务 ,能够找到较好的结果

我们通过两个图更好理解梯度下降的过程
在这里插入图片描述

所以有了梯度下降这样一个优化算法,回归就有了"自动学习"的能力

2.3 优化动态图演示

3、 线性回归API

第1种API(LinearRegression):

sklearn.linear_model.LinearRegression(fit_intercept=True)
//通过正规方程优化
//fit_intercept:是否计算偏置
//LinearRegression.coef_:回归系数
//LinearRegression.intercept_:偏置

第2种API(SGDRegressor):

sklearn.linear_model.SGDRegressor(loss="squared_loss", fit_intercept=True, learning_rate ='invscaling', eta0=0.01)
//通过梯度下降法进行优化
//loss:损失类型
//loss=”squared_loss”: 普通最小二乘法
//fit_intercept:是否计算偏置
//SGDRegressor.coef_:回归系数
//SGDRegressor.intercept_:偏置

4、波士顿房价预测

4.1 数据介绍

在这里插入图片描述
在这里插入图片描述

4.2 分析

回归当中的数据大小不一致,是否会导致结果影响较大。所以需要做标准化处理。同时我们对目标值也需要做标准化处理。

  1. 数据分割与标准化处理
  2. 回归预测
  3. 线性回归的算法效果评估

4.2 回归性能评估

均方误差(Mean Squared Error)MSE)评价机制:

在这里插入图片描述

线性回归评估

注:y^i为预测值,¯y为真实值

sklearn.metrics.mean_squared_error(y_true, y_pred) 均方误差回归损失

  1. y_true:真实值
  2. y_pred:预测值
  3. return:浮点数结果

4.3 代码实现

def mylinearregression():
    """
    线性回归预测房子价格
    :return:
    """
    lb = load_boston()
    #
    # print(lb.data)
    #
    # print(lb.target)

    # 对数据集进行划分
    x_train, x_test, y_train, y_test = train_test_split(lb.data, lb.target, test_size=0.3, random_state=24)

    # 需要做标准化处理对于特征值处理
    std_x = StandardScaler()

    x_train = std_x.fit_transform(x_train)
    x_test = std_x.fit_transform(x_test)
    # print(x_train)

    # 对于目标值进行标准化
    std_y = StandardScaler()

    y_train = std_y.fit_transform(y_train)
    y_test = std_y.transform(y_test)
    y_test = std_y.inverse_transform(y_test)

    # 使用线性模型进行预测
    # 使用正规方程求解
    lr = LinearRegression()
    # # 此时在干什么?
    lr.fit(x_train, y_train)

    y_lr_predict = std_y.inverse_transform(lr.predict(x_test))

    print(lr.coef_)

    print("正规方程预测的结果为:", y_lr_predict)

    print("正规方程的均方误差为:", mean_squared_error(y_test, y_lr_predict))

    # 梯度下降进行预测
    sgd = SGDRegressor()
    #
    sgd.fit(x_train, y_train)
    print("SGD的权重参数为:", sgd.coef_)
    #
    y_sgd_predict = std_y.inverse_transform(sgd.predict(x_test))
    #
    print("SGD的预测的结果为:", y_sgd_predict)
    #
    # # 怎么评判这两个方法好坏
    print("SGD的均方误差为:", mean_squared_error(y_test, y_sgd_predict))

    return None

5 总结

思维导图:

梯度下降于正则方程的对比:
在这里插入图片描述
模型选择:
小规模数据:

  1. LinearRegression(不能解决拟合问题)
  2. 岭回归

大规模数据:SGDRegressor

  • 1
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值