CTFT题目

目录

  1
  2
  3
  4
  5
  5
  7
  8
  9
  10

1.证明若 x a ( t ) x_a(t) xa(t)是有限的,式
X a ( j Ω ) = ∫ − ∞ ∞ x a ( t ) e − j Ω t d t X_a(j\Omega)=\int_{-\infty}^{\infty}x_a(t)e^{-j\Omega t}dt Xa(jΩ)=xa(t)ejΩtdt
定义的 X a ( j Ω ) X_a(j\Omega) Xa(jΩ)的绝对值绝对可积。
解:
∣ x a ( t ) ∣ &lt; ∞ \vert x_a(t)\vert &lt; \infty xa(t)<
∣ x a ( t ) ∣ = ∣ 1 2 π ∫ − ∞ ∞ X a ( j Ω ) e j Ω t d Ω ∣ ≤ 1 2 π ∫ − ∞ ∞ ∣ X a ( j Ω ) ∣ ∣ e j Ω t ∣ d Ω = 1 2 π ∫ − ∞ ∞ ∣ X a ( j Ω ) d Ω &lt; ∞ \begin{aligned} \vert x_a(t)\vert&amp;=\vert \frac{1}{2\pi}\int_{-\infty}^{\infty}X_a(j\Omega)e^{j\Omega t}d\Omega\vert \\ &amp;\leq \frac{1}{2\pi}\int_{-\infty}^{\infty}\vert X_a(j\Omega) \vert\vert e^{j\Omega t}\vert d\Omega\\ &amp;=\frac{1}{2\pi}\int_{-\infty}^{\infty}\vert X_a(j\Omega)d\Omega&lt;\infty \end{aligned} xa(t)=2π1Xa(jΩ)ejΩtdΩ2π1Xa(jΩ)ejΩtdΩ=2π1Xa(jΩ)dΩ<
所以
∫ − ∞ ∞ ∣ X a ( j Ω ) d Ω &lt; ∞ \int_{-\infty}^{\infty}\vert X_a(j\Omega)d\Omega&lt;\infty Xa(jΩ)dΩ<
X a ( j Ω ) X_a(j\Omega) Xa(jΩ)的绝对值绝对可积。
返回目录

2.求定义在 − ∞ &lt; t &lt; ∞ -\infty &lt; t &lt; \infty <t<的下列连续时间函数的CTFT:
(a) y a ( t ) = s i n ( Ω a t ) y_a(t)=sin(\Omega _at) ya(t)=sin(Ωat)
(b) u a ( t ) = e − α ∣ t ∣ u_a(t)=e^{-\alpha\vert t\vert} ua(t)=eαt
(c) v a ( t ) = e j Ω 0 t v_a(t)=e^{j\Omega_0t} va(t)=ejΩ0t
(d) p a ( t ) = ∑ l = − ∞ ∞ δ ( t − l T ) p_a(t)=\sum_{l=-\infty}^{\infty}\delta(t-lT) pa(t)=l=δ(tlT)
(e) g a ( t ) = e − a t 2 g_a(t)=e^{-at^2} ga(t)=eat2
解:
(a)
s i n ( Ω 0 t ) = 1 2 j ( e j Ω 0 t − e − j Ω 0 t ) sin(\Omega_0t)=\frac{1}{2j}(e^{j\Omega_0t}-e^{-j\Omega_0t}) sin(Ω0t)=2j1(ejΩ0tejΩ0t)

1 → C T F T 2 π δ ( Ω ) 1\xrightarrow{CTFT}2\pi \delta(\Omega) 1CTFT 2πδ(Ω)
所以
1 ⋅ e j Ω 0 t → C T F T 2 π δ ( Ω − Ω 0 ) 1 ⋅ e − j Ω 0 t → C T F T 2 π δ ( Ω + Ω 0 ) 1\cdot e^{j\Omega_0t}\xrightarrow{CTFT}2\pi \delta(\Omega - \Omega_0) \\ 1 \cdot e^{-j\Omega_0t}\xrightarrow{CTFT}2\pi \delta(\Omega + \Omega_0) 1ejΩ0tCTFT 2πδ(ΩΩ0)1ejΩ0tCTFT 2πδ(Ω+Ω0)

s i n ( Ω 0 t ) → C T F T π j ( δ ( Ω + Ω 0 ) − δ ( Ω − Ω 0 ) ) \color{red}sin(\Omega_0t)\xrightarrow{CTFT}\pi j(\delta(\Omega+\Omega_0)-\delta(\Omega-\Omega_0)) sin(Ω0t)CTFT πj(δ(Ω+Ω0)δ(ΩΩ0))
(b)
U ( j Ω ) = ∫ − ∞ ∞ e − α ∣ t ∣ e − j Ω t d t = ∫ − ∞ 0 e α t e − j Ω t d t + ∫ 0 ∞ e − α t e − j Ω t d t U(j\Omega)=\int_{-\infty}^{\infty}e^{-\alpha\vert t \vert}e^{-j\Omega t}dt=\int_{-\infty}^{0}e^{\alpha t }e^{-j\Omega t}dt+\int_{0}^{\infty}e^{-\alpha t }e^{-j\Omega t}dt U(jΩ)=eαtejΩtdt=0eαtejΩtdt+0eαtejΩtdt
∫ 0 ∞ e − α t d t = 1 − α e − α t ∣ 0 ∞ = 1 α \int_{0}^{\infty}e^{-\alpha t}dt=\frac{1}{-\alpha}e^{-\alpha t}\vert_{0}^{\infty}=\frac{1}{\alpha} 0eαtdt=α1eαt0=α1

U ( j Ω ) = ∫ − ∞ 0 e α t e − j Ω t d t + ∫ 0 ∞ e − α t e − j Ω t d t = ∫ 0 ∞ e − α t e j Ω t d t + ∫ 0 ∞ e − α t e − j Ω t d t = 1 α − j Ω + 1 α + j Ω = 2 α Ω 2 + α 2 U(j\Omega)=\int_{-\infty}^{0}e^{\alpha t }e^{-j\Omega t}dt+\int_{0}^{\infty}e^{-\alpha t }e^{-j\Omega t}dt=\int_{0}^{\infty}e^{-\alpha t}e^{j\Omega t}dt + \int_{0}^{\infty}e^{-\alpha t }e^{-j\Omega t}dt \\ =\frac{1}{\alpha-j\Omega}+\frac{1}{\alpha+j\Omega}=\frac{2\alpha}{\Omega^2+\alpha^2} U(jΩ)=0eαtejΩtdt+0eαtejΩtdt=0eαtejΩtdt+0eαtejΩtdt=αjΩ1+α+jΩ1=Ω2+α22α

e − α ∣ t ∣ → C T F T 2 α Ω 2 + α 2 \color{red}e^{-\alpha \vert t \vert} \xrightarrow{CTFT}\frac{2\alpha}{\Omega^2+\alpha^2} eαtCTFT Ω2+α22α
(c)
e j Ω 0 t → C T F T 2 π δ ( Ω − Ω 0 ) \color{red}e^{j\Omega_0t}\xrightarrow{CTFT}2\pi\delta(\Omega-\Omega_0) ejΩ0tCTFT 2πδ(ΩΩ0)
(d)
   p a ( t ) p_a(t) pa(t)是周期为 l l l的周期函数,所以可以将其进行傅里叶级数展开,其主周期的傅里叶变换为
F ( j Ω ) = C T F T [ δ ( t ) ] = 1 F(j\Omega)=CTFT[\delta(t)]=1 F(jΩ)=CTFT[δ(t)]=1
故其傅里叶级数的系数为
c n = 1 T F ( j Ω ) ∣ Ω = n Ω 0 = 1 T = 1 l c_n=\frac{1}{T}F(j\Omega)\vert_{\Omega=n\Omega_0}=\frac{1}{T}=\frac{1}{l} cn=T1F(jΩ)Ω=nΩ0=T1=l1

∑ l = − ∞ ∞ δ ( t − l T ) = ∑ n = − ∞ ∞ 1 l e j n Ω 0 t \sum_{l=-\infty}^{\infty}\delta(t-lT)=\sum_{n=-\infty}^{\infty}\frac{1}{l}e^{jn\Omega_0 t} l=δ(tlT)=n=l1ejnΩ0t
其中 Ω 0 = 2 π l \Omega_0=\frac{2\pi}{l} Ω0=l2π,将上式两边同时进行傅里叶变换
C T F T [ ∑ l = − ∞ ∞ δ ( t − l T ) ] = 1 l ∑ n = − ∞ ∞ 2 π δ ( Ω − n Ω 0 ) = Ω 0 ∑ n = − ∞ ∞ δ ( Ω − n Ω 0 ) CTFT[\sum_{l=-\infty}^{\infty}\delta(t-lT)]=\frac{1}{l}\sum_{n=-\infty}^{\infty}2\pi\delta(\Omega - n\Omega_0)=\Omega_0\sum_{n=-\infty}^{\infty}\delta(\Omega - n\Omega_0) CTFT[l=δ(tlT)]=l1n=2πδ(ΩnΩ0)=Ω0n=δ(ΩnΩ0)

∑ l = − ∞ ∞ δ ( t − l T ) → C T F T Ω 0 ∑ n = − ∞ ∞ δ ( Ω − n Ω 0 ) , &ThinSpace; Ω 0 = 2 π l \color{red}\sum_{l=-\infty}^{\infty}\delta(t-lT)\xrightarrow{CTFT}\Omega_0\sum_{n=-\infty}^{\infty}\delta(\Omega - n\Omega_0),\, \Omega_0=\frac{2\pi}{l} l=δ(tlT)CTFT Ω0n=δ(ΩnΩ0),Ω0=l2π
(e)
∫ − ∞ ∞ e − a t 2 e − j Ω t d t = ∫ − ∞ ∞ e − a ( t 2 + 2 j Ω 2 a t + ( j Ω 2 a ) 2 ) + a ( j Ω 2 a ) 2 d t = e − Ω 2 4 a ∫ − ∞ ∞ e − a ( t + j Ω 2 a ) 2 d t \int_{-\infty}^{\infty}e^{-at^2}e^{-j\Omega t}dt=\int_{-\infty}^{\infty}e^{-a(t^2+2\frac{j\Omega}{2a}t+(\frac{j\Omega}{2a})^2)+a(\frac{j\Omega}{2a})^2}dt \\ \\ =e^{-\frac{\Omega^2}{4a}}\int_{-\infty}^{\infty}e^{-a(t+\frac{j\Omega}{2a})^2}dt eat2ejΩtdt=ea(t2+22ajΩt+(2ajΩ)2)+a(2ajΩ)2dt=e4aΩ2ea(t+2ajΩ)2dt
考虑一高斯分布为
1 2 π 1 2 a e − a ( t + j Ω 2 a ) 2 ⇒ ∫ − ∞ ∞ a π e − a ( t + j Ω 2 a ) 2 d t = 1 ⇒ ∫ − ∞ ∞ e − a ( t + j Ω 2 a ) 2 d t = π a \frac{1}{\sqrt{2\pi}\frac{1}{\sqrt{2a}}}e^{-a(t+\frac{j\Omega}{2a})^2} \Rightarrow\int_{-\infty}^{\infty}\frac{\sqrt{a}}{\sqrt{\pi}}e^{-a(t+\frac{j\Omega}{2a})^2}dt = 1 \Rightarrow\int_{-\infty}^{\infty}e^{-a(t+\frac{j\Omega}{2a})^2}dt=\frac{\sqrt{\pi}}{\sqrt{a}} 2π 2a 11ea(t+2ajΩ)2π a ea(t+2ajΩ)2dt=1ea(t+2ajΩ)2dt=a π
所以
∫ − ∞ ∞ e − a t 2 e − j Ω t d t = π a e − Ω 2 4 a \int_{-\infty}^{\infty}e^{-at^2}e^{-j\Omega t}dt=\sqrt{\frac{\pi}{a}}e^{-\frac{\Omega^2}{4a}} eat2ejΩtdt=aπ e4aΩ2
所以
e − a t 2 → C T F T π a e − Ω 2 4 a \color{red}e^{-at^2} \xrightarrow{CTFT}\sqrt{\frac{\pi}{a}}e^{-\frac{\Omega^2}{4a}} eat2CTFT aπ e4aΩ2
返回目录

3.求定义在 − ∞ &lt; t &lt; ∞ -\infty &lt; t &lt;\infty <t<的下列连续时间函数的CTFT:
(a) v a ( t ) = 1 v_a(t)=1 va(t)=1
(b) μ a ( t ) = { 1 , t ≥ 0 0 , t &lt; 0 \mu_a(t)= \begin{cases} 1, \quad t \geq 0 \\ 0, \quad t &lt; 0 \end{cases} μa(t)={1,t00,t<0
(c) x a ( t ) = { 1 , ∣ t ∣ &lt; 1 2 1 2 , ∣ t ∣ = 1 2 0 , ∣ t ∣ &gt; 1 2 x_a(t)= \begin{cases} 1, \quad &amp;\vert t \vert &lt; \frac{1}{2}\\ \frac{1}{2}, \quad &amp;\vert t \vert = \frac{1}{2} \\ 0, \quad &amp;\vert t \vert &gt; \frac{1}{2} \end{cases} xa(t)=1,21,0,t<21t=21t>21
(d) y a ( t ) = { 1 − 2 ∣ t ∣ , &ThinSpace; ∣ t ∣ &lt; 1 2 0 , &ThinSpace; ∣ t ∣ ≥ 1 2 y_a(t)= \begin{cases} 1 - 2\vert t \vert, \, &amp;\vert t \vert &lt; \frac{1}{2} \\ 0, \, &amp;\vert t \vert \geq \frac{1}{2} \end{cases} ya(t)={12t,0,t<21t21
解:
(a)
由于 1 1 1既不绝对可和,也不平方可和,所以不能从定义直接得到,不过可以考虑
1 = lim ⁡ α → 0 e − α ∣ t ∣ 1=\lim\limits_{\alpha \to 0}e^{-\alpha \vert t \vert} 1=α0limeαt
由于 e − α ∣ t ∣ → C T F T 2 α Ω 2 + α 2 e^{-\alpha \vert t \vert}\xrightarrow{CTFT}\frac{2\alpha}{\Omega^2+\alpha^2} eαtCTFT Ω2+α22α
所以
lim ⁡ α → 0 2 α Ω 2 + α 2 = { ∞ , &ThinSpace; Ω = 0 0 , &ThinSpace; Ω ̸ = 0 \lim\limits_{\alpha \to 0}\frac{2\alpha}{\Omega^2+\alpha^2}= \begin{cases} \infty, \, &amp;\Omega = 0 \\ 0, \, &amp;\Omega \not = 0 \end{cases} α0limΩ2+α22α={,0,Ω=0Ω̸=0
并且
lim ⁡ α → 0 ∫ − ∞ ∞ 2 α Ω 2 + α 2 d Ω = lim ⁡ α → 0 2 ∫ ∞ ∞ 1 1 + Ω 2 α 2 d ( Ω α ) = lim ⁡ α → 0 2 a r c t a n ( Ω α ) ∣ − ∞ ∞ = 2 π \lim\limits_{\alpha \to 0}\int_{-\infty}^{\infty}\frac{2\alpha}{\Omega^2+\alpha^2}d\Omega=\lim\limits_{\alpha \to 0}2\int_{\infty}^{\infty}\frac{1}{1+\frac{\Omega^2}{\alpha^2}}d(\frac{\Omega}{\alpha})=\lim\limits_{\alpha \to 0}2arctan(\frac{\Omega}{\alpha})\vert_{-\infty}^{\infty}=2\pi α0limΩ2+α22αdΩ=α0lim21+α2Ω21d(αΩ)=α0lim2arctan(αΩ)=2π
所以
1 → C T F T 2 π δ ( Ω ) \color{red}1\xrightarrow{CTFT}2\pi\delta(\Omega) 1CTFT 2πδ(Ω)
(b)
μ ( t ) \mu(t) μ(t)既不是平方可和,也不是平方可和的,所以还得用别的办法:
μ ( t ) = 1 2 ( 1 + s g n ( t ) ) \mu(t)=\frac{1}{2}(1+sgn(t)) μ(t)=21(1+sgn(t))
C T F T [ μ ( t ) ] = C T F T [ 1 2 ( 1 + s g n ( t ) ) ] = π δ ( Ω ) + 1 j Ω CTFT[\mu(t)]=CTFT[\frac{1}{2}(1+sgn(t))]=\pi\delta(\Omega)+\frac{1}{j\Omega} CTFT[μ(t)]=CTFT[21(1+sgn(t))]=πδ(Ω)+jΩ1
(c)
这道题暂时没想到怎么做
(d)
该函数为 Λ ( 2 t ) \Lambda(2t) Λ(2t),由于
Λ ( t ) → C T F T ( s i n ( Ω 2 ) Ω 2 ) 2 = S a 2 ( Ω 2 ) \Lambda(t)\xrightarrow{CTFT}(\frac{sin(\frac{\Omega}{2})}{\frac{\Omega}{2}})^2=Sa^2(\frac{\Omega}{2}) Λ(t)CTFT (2Ωsin(2Ω))2=Sa2(2Ω)
所以
Λ ( 2 t ) → C T F T 1 4 S a 2 ( Ω 4 ) \Lambda(2t)\xrightarrow{CTFT}\frac{1}{4}Sa^2(\frac{\Omega}{4}) Λ(2t)CTFT 41Sa2(4Ω)
返回目录

4.为了方便,式定义的高斯密度函数重写如下:
h ( t ) = 1 σ 2 π e − ( t − μ ) 2 2 σ 2 h(t)=\frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(t-\mu)^2}{2\sigma^2}} h(t)=σ2π 1e2σ2(tμ)2
其中, σ \sigma σ μ \mu μ分别是该密度函数的方差和均值。具有上式给出的零均值的冲激响应的连续时间的滤波器称为高斯滤波器。证明 h ( t ) h(t) h(t) C T F T CTFT CTFT也是 Ω \Omega Ω的高斯函数。
解:考虑零均值的高斯函数
h ( t ) = 1 σ 2 π e − t 2 2 σ 2 h(t)=\frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{t^2}{2\sigma^2}} h(t)=σ2π 1e2σ2t2
a = 1 2 σ 2 a=\frac{1}{2\sigma^2} a=2σ21,则
h ( t ) = 1 σ 2 π e − a t 2 h(t)=\frac{1}{\sigma\sqrt{2\pi}}e^{-at^{2}} h(t)=σ2π 1eat2
之前已经证明
e − a t 2 → C T F T π a e − Ω 2 4 a e^{-at^2} \xrightarrow{CTFT}\sqrt{\frac{\pi}{a}}e^{-\frac{\Omega^2}{4a}} eat2CTFT aπ e4aΩ2

C T F T [ h ( t ) ] = 1 σ 2 π π a e − Ω 2 4 a = e − σ 2 Ω 2 2 CTFT[h(t)]=\frac{1}{\sigma\sqrt{2\pi}}\sqrt{\frac{\pi}{a}}e^{-\frac{\Omega^2}{4a}}=e^{-\frac{\sigma^2\Omega^2}{2}} CTFT[h(t)]=σ2π 1aπ e4aΩ2=e2σ2Ω2
服从高斯分布。
返回目录

5.有限能量的函数 x a ( t ) = s i n ( t ) / π t x_a(t)=sin(t)/\pi t xa(t)=sin(t)/πt不是绝对可和的。证明其 C T F T CTFT CTFT
X a ( j Ω ) = { 1 , &ThinSpace; ∣ Ω ∣ ≤ 1 0 , &ThinSpace; ∣ Ω ∣ &gt; 1 X_a(j\Omega)= \begin{cases} 1, \, &amp; \vert \Omega \vert \leq 1 \\ 0, \, &amp; \vert \Omega \vert &gt; 1 \end{cases} Xa(jΩ)={1,0,Ω1Ω>1
解:
X a ( j Ω ) = ∫ − ∞ ∞ x a ( t ) e − j Ω t d t = ∫ − ∞ ∞ s i n ( t ) π t e − j Ω t d t = ∫ − ∞ ∞ s i n ( t ) π t ( c o s ( Ω t ) − j s i n ( Ω t ) ) d t = ∫ − ∞ ∞ s i n ( t ) c o s ( Ω t ) π t d t = ∫ 0 ∞ s i n ( Ω + 1 ) t + s i n ( Ω − 1 ) t π t d t = Ω + 1 π ∫ 0 ∞ s i n ( Ω + 1 ) t ( Ω + 1 ) t − Ω − 1 π ∫ 0 ∞ s i n ( Ω − 1 ) t ( Ω − 1 ) t = Ω + 1 2 ∣ Ω + 1 ∣ − Ω − 1 2 ∣ Ω − 1 ∣ \begin{aligned} X_a(j\Omega)&amp;=\int_{-\infty}^{\infty}x_a(t)e^{-j\Omega t}dt=\int_{-\infty}^{\infty}\frac{sin(t)}{\pi t}e^{-j\Omega t}dt \\ &amp;=\int_{-\infty}^{\infty}\frac{sin(t)}{\pi t}(cos(\Omega t)-jsin(\Omega t))dt \\ &amp;=\int_{-\infty}^{\infty}\frac{sin(t)cos(\Omega t)}{\pi t}dt =\int_{0}^{\infty}\frac{sin(\Omega + 1)t + sin(\Omega - 1)t}{\pi t}dt\\ &amp;=\frac{\Omega+1}{\pi}\int_{0}^{\infty}\frac{sin(\Omega + 1)t}{(\Omega+1)t}-\frac{\Omega-1}{\pi}\int_{0}^{\infty}\frac{sin(\Omega - 1)t}{(\Omega-1)t} \\ &amp;=\frac{\Omega+1}{2\vert \Omega + 1\vert} -\frac{\Omega-1}{2\vert \Omega - 1\vert} \end{aligned} Xa(jΩ)=xa(t)ejΩtdt=πtsin(t)ejΩtdt=πtsin(t)(cos(Ωt)jsin(Ωt))dt=πtsin(t)cos(Ωt)dt=0πtsin(Ω+1)t+sin(Ω1)tdt=πΩ+10(Ω+1)tsin(Ω+1)tπΩ10(Ω1)tsin(Ω1)t=2Ω+1Ω+12Ω1Ω1
容易验证
X ( j Ω ) = { 1 , &ThinSpace; ∣ Ω ∣ ≤ 1 0 , &ThinSpace; ∣ Ω ∣ &gt; 1 X(j\Omega)= \begin{cases} 1, \, &amp;\vert \Omega \vert \leq 1 \\ 0, \, &amp;\vert \Omega \vert &gt; 1 \end{cases} X(jΩ)={1,0,Ω1Ω>1
返回目录

6.考虑 C T F T CTFT CTFT
x a ( t ) ↔ C T F T X a ( j Ω ) x_a(t)\xleftrightarrow{CTFT}X_a(j\Omega) xa(t)CTFT Xa(jΩ)
证明下面的定理:
(a)时移定理: x a ( t − t 0 ) ↔ C T F T X a ( j Ω ) e − j Ω t 0 x_a(t-t_0)\xleftrightarrow{CTFT}X_a(j\Omega)e^{-j\Omega t_0} xa(tt0)CTFT Xa(jΩ)ejΩt0
(b)频移定理: x a ( t ) e j Ω 0 t ↔ C T F T X a ( j ( Ω − Ω 0 ) ) x_a(t)e^{j\Omega_0t}\xleftrightarrow{CTFT}X_a(j(\Omega-\Omega_0)) xa(t)ejΩ0tCTFT Xa(j(ΩΩ0))
(c)对称定理: X a ( t ) ↔ C T F T 2 π x a ( − j Ω ) X_a(t)\xleftrightarrow{CTFT}2\pi x_a(-j\Omega) Xa(t)CTFT 2πxa(jΩ)
(d)尺度缩放定理: x a ( a t ) ↔ C T F T 1 ∣ a ∣ X a ( j Ω a ) x_a(at)\xleftrightarrow{CTFT}\frac{1}{\vert a\vert}X_a(j\frac{\Omega}{a}) xa(at)CTFT a1Xa(jaΩ)
(e)时间微分定理: d x a ( t ) d t ↔ C T F T j Ω X a ( j Ω ) \frac{dx_a(t)}{dt}\xleftrightarrow{CTFT}j\Omega X_a(j\Omega) dtdxa(t)CTFT jΩXa(jΩ)
解:
(a)
∫ − ∞ ∞ x a ( t − t 0 ) e − j Ω t d t → m = t − t 0 ∫ − ∞ ∞ x a ( m ) e − j Ω m e − j Ω t 0 d t = X a ( j Ω ) e − j Ω t 0 \int_{-\infty}^{\infty}x_a(t-t_0)e^{-j\Omega t}dt\xrightarrow{m=t-t_0}\int_{-\infty}^{\infty}x_a(m)e^{-j \Omega m}e^{-j \Omega t_0}dt=X_a(j\Omega)e^{-j\Omega t_0} xa(tt0)ejΩtdtm=tt0 xa(m)ejΩmejΩt0dt=Xa(jΩ)ejΩt0
(b)
∫ − ∞ ∞ x a ( t ) e j Ω 0 t e − j Ω t d t = ∫ − ∞ ∞ x a ( t ) e − j ( Ω − Ω 0 ) t d t = X a ( j ( Ω − Ω 0 ) ) \int_{-\infty}^{\infty}x_a(t)e^{j\Omega_0t}e^{-j\Omega t}dt=\int_{-\infty}^{\infty}x_a(t)e^{-j(\Omega-\Omega_0)t}dt=X_a(j(\Omega-\Omega_0)) xa(t)ejΩ0tejΩtdt=xa(t)ej(ΩΩ0)tdt=Xa(j(ΩΩ0))
(c)
x a ( t ) = 1 2 π ∫ − ∞ ∞ X ( j Ω ) e j Ω t d Ω ⇒ ∫ − ∞ ∞ X ( j Ω ) e j Ω t d Ω = 2 π x a ( t ) x_a(t)=\frac{1}{2\pi}\int_{-\infty}^{\infty}X(j\Omega)e^{j\Omega t}d\Omega\Rightarrow\int_{-\infty}^{\infty}X(j\Omega)e^{j\Omega t}d\Omega=2\pi x_a(t) xa(t)=2π1X(jΩ)ejΩtdΩX(jΩ)ejΩtdΩ=2πxa(t)
∫ − ∞ ∞ X ( t ) e − j Ω t d t = ∫ − ∞ ∞ X ( t ) e j ( − Ω ) t d t = 2 π x a ( − j Ω ) \int_{-\infty}^{\infty}X(t)e^{-j\Omega t}dt=\int_{-\infty}^{\infty}X(t)e^{j(-\Omega) t}dt=2\pi x_a(-j \Omega) X(t)ejΩtdt=X(t)ej(Ω)tdt=2πxa(jΩ)
(d)
∫ − ∞ ∞ x a ( a t ) e − j Ω t d t \int_{-\infty}^{\infty}x_a(at)e^{-j\Omega t}dt xa(at)ejΩtdt
a &gt; 0 , 令 l = a t a&gt;0,令l=at a>0,l=at
∫ − ∞ ∞ x a ( l ) e − j Ω a l d ( l a ) = 1 a ∫ − ∞ ∞ x a ( l ) e − j Ω a l d l = 1 a X a ( j Ω a ) \int_{-\infty}^{\infty}x_a(l)e^{-j\frac{\Omega}{a} l}d(\frac{l}{a})=\frac{1}{a}\int_{-\infty}^{\infty}x_a(l)e^{-j\frac{\Omega}{a} l}dl=\frac{1}{a}X_a(\frac{j \Omega}{a}) xa(l)ejaΩld(al)=a1xa(l)ejaΩldl=a1Xa(ajΩ)
a &lt; 0 , 令 l = a t a&lt;0,令l=at a<0,l=at
∫ ∞ − ∞ x a ( l ) e − j Ω a l d ( l a ) = − 1 a ∫ − ∞ ∞ x a ( l ) e − j Ω a l d l = − 1 a X a ( j Ω a ) \int_{\infty}^{-\infty}x_a(l)e^{-j\frac{\Omega}{a} l}d(\frac{l}{a})=-\frac{1}{a}\int_{-\infty}^{\infty}x_a(l)e^{-j\frac{\Omega}{a} l}dl=-\frac{1}{a}X_a(\frac{j \Omega}{a}) xa(l)ejaΩld(al)=a1xa(l)ejaΩldl=a1Xa(ajΩ)
注意这里因为 a &lt; 0 a&lt;0 a<0,所以变量替换的时候积分上下限的正负性发生变化
综上
x a ( a t ) ↔ C T F T 1 ∣ a ∣ X a ( j Ω a ) x_a(at)\xleftrightarrow{CTFT}\frac{1}{\vert a \vert}X_a(\frac{j\Omega}{a}) xa(at)CTFT a1Xa(ajΩ)
(e)
x a ( t ) = 1 2 π ∫ − ∞ ∞ X ( j Ω ) e j Ω t d Ω x_a(t)=\frac{1}{2\pi}\int_{-\infty}^{\infty}X(j\Omega)e^{j\Omega t}d\Omega xa(t)=2π1X(jΩ)ejΩtdΩ
左右两边同时对 t t t进行积分
d x a ( t ) d t = 1 2 π ∫ − ∞ ∞ j Ω X ( j Ω ) e j Ω t d Ω \frac{dx_a(t)}{dt}=\frac{1}{2\pi}\int_{-\infty}^{\infty}j\Omega X(j\Omega)e^{j\Omega t}d\Omega dtdxa(t)=2π1jΩX(jΩ)ejΩtdΩ
所以
d x a ( t ) d t ↔ C T F T j Ω X a ( j Ω ) \frac{dx_a(t)}{dt}\xleftrightarrow{CTFT}j\Omega X_a(j\Omega) dtdxa(t)CTFT jΩXa(jΩ)
返回目录

7. X a ( j Ω ) X_a(j\Omega) Xa(jΩ)表示实值连续时间函数 x a ( t ) x_a(t) xa(t) C T F T CTFT CTFT。证明其幅度谱 ∣ X a ( j Ω ) ∣ \vert X_a(j\Omega) \vert Xa(jΩ) Ω \Omega Ω的偶函数,而相位谱 θ ( Ω ) = a r g { X a ( j Ω ) } \theta(\Omega)=arg\{X_a(j\Omega)\} θ(Ω)=arg{Xa(jΩ)} Ω \Omega Ω的奇函数。
解:由于 x a ( t ) x_a(t) xa(t)为实值函数,所以 x a ( t ) = x a ∗ ( t ) x_a(t)=x^{*}_a(t) xa(t)=xa(t)
∫ ∞ − ∞ x a ∗ ( t ) e − j Ω t d t = ( ∫ ∞ − ∞ x a ( t ) e − j ( − Ω ) t d t ) ∗ = X a ∗ ( − j Ω ) \int_{\infty}^{-\infty}x^{*}_a(t)e^{-j\Omega t}dt=(\int_{\infty}^{-\infty}x_a(t)e^{-j(-\Omega) t}dt)^{*}=X^{*}_a(-j\Omega) xa(t)ejΩtdt=(xa(t)ej(Ω)tdt)=Xa(jΩ)
⇒ X a ( j Ω ) = X a ∗ ( − j Ω ) ⇒ X a ( − j Ω ) = X a ∗ ( j Ω ) \Rightarrow X_a(j\Omega)=X^{*}_a(-j\Omega) \Rightarrow X_a(-j\Omega)=X^{*}_a(j\Omega) Xa(jΩ)=Xa(jΩ)Xa(jΩ)=Xa(jΩ)

∣ X a ( j Ω ) ∣ = ∣ X a ∗ ( j Ω ) ∣ = ∣ X ( − j Ω ) ∣ \vert X_a(j\Omega) \vert = \vert X^{*}_a(j\Omega)\vert = \vert X(-j\Omega) \vert Xa(jΩ)=Xa(jΩ)=X(jΩ)
a r g { X a ( j Ω ) } = − a r g { X a ∗ ( j Ω ) } = − a r g { X a ( − j Ω ) } arg\{X_a(j\Omega)\}=-arg\{X^{*}_a(j\Omega)\}=-arg\{X_a(-j\Omega)\} arg{Xa(jΩ)}=arg{Xa(jΩ)}=arg{Xa(jΩ)}
所以其幅度谱为偶函数,其相位谱为奇函数。
返回目录

8.证明式
h H T ( t ) = 1 π t h_{HT}(t)=\frac{1}{\pi t} hHT(t)=πt1
定义的希尔伯特变换的 C T F T CTFT CTFT
H H T ( j Ω ) = { − j , &ThinSpace; Ω &gt; 0 j , &ThinSpace; Ω &lt; 0 H_{HT}(j\Omega)= \begin{cases} -j, \, &amp;\Omega &gt; 0 \\ j, \, &amp;\Omega &lt; 0 \end{cases} HHT(jΩ)={j,j,Ω>0Ω<0
解:
H H T ( j Ω ) = ∫ − ∞ ∞ 1 π t e − j Ω t d t = 1 π ∫ − ∞ ∞ c o s Ω t − j s i n Ω t t d t = − 2 j Ω π ∫ 0 ∞ s i n Ω t Ω t d t = − j Ω ∣ Ω ∣ = { − j , &ThinSpace; Ω &gt; 0 j , &ThinSpace; Ω &lt; 0 \begin{aligned} H_{HT}(j\Omega)&amp;=\int_{-\infty}^{\infty}\frac{1}{\pi t}e^{-j\Omega t}dt \\ &amp;=\frac{1}{\pi}\int_{-\infty}^{\infty}\frac{cos\Omega t -jsin\Omega t}{t}dt \\ &amp;=\frac{-2j\Omega}{\pi}\int_{0}^{\infty}\frac{sin\Omega t}{\Omega t}dt \\ &amp;=-j\frac{\Omega}{\vert \Omega \vert} \\ &amp;=\begin{cases} -j, \, &amp;\Omega &gt; 0 \\ j, \, &amp;\Omega &lt; 0 \end{cases} \end{aligned} HHT(jΩ)=πt1ejΩtdt=π1tcosΩtjsinΩtdt=π2jΩ0ΩtsinΩtdt=jΩΩ={j,j,Ω>0Ω<0
这里使用了一个结论
∫ 0 ∞ s i n Ω t Ω t d t = π 2 ∣ Ω ∣ \int_{0}^{\infty}\frac{sin\Omega t}{\Omega t}dt=\frac{\pi}{2\vert \Omega \vert} 0ΩtsinΩtdt=2Ωπ
返回目录

9. x ( t ) x(t) x(t)是实值输入信号,其 C T F T CTFT CTFT X ( j Ω ) = X p ( j Ω ) + X n ( j Ω ) X(j\Omega)=X_p(j\Omega)+X_n(j\Omega) X(jΩ)=Xp(jΩ)+Xn(jΩ),其中 X p ( j Ω ) X_p(j\Omega) Xp(jΩ)是占据 X ( j Ω ) X(j\Omega) X(jΩ)正频率范围的分量, X n ( j Ω ) X_n(j\Omega) Xn(jΩ)是占据 X ( j Ω ) X(j\Omega) X(jΩ)负频率范围的分量。令 x ^ ( t ) \hat{x}(t) x^(t)表示 x ( t ) x(t) x(t)的希尔伯特变换。证明:复值信号 y ( t ) = x ( t ) + j x ^ ( t ) y(t)=x(t)+j\hat{x}(t) y(t)=x(t)+jx^(t) C T F T &ThinSpace; Y ( j Ω ) CTFT\, Y(j\Omega) CTFTY(jΩ) Y ( j Ω ) = 2 X p ( j Ω ) Y(j\Omega)=2X_p(j\Omega) Y(jΩ)=2Xp(jΩ),即 y ( t ) y(t) y(t)的谱只包含正频率范围的分量。
解:
由希尔伯特变换的定义
X ^ ( j Ω ) = − j X p ( j Ω ) + j X n ( j Ω ) \hat{X}(j\Omega)=-jX_p(j\Omega)+jX_n(j\Omega) X^(jΩ)=jXp(jΩ)+jXn(jΩ)
则信号 y ( t ) = x ( t ) + j x ^ ( t ) y(t)=x(t)+j\hat{x}(t) y(t)=x(t)+jx^(t)的傅里叶变换为
Y ( j Ω ) = X ( j Ω ) + j X ^ ( j Ω ) = X p ( j Ω ) + X n ( j Ω ) + j ( − j X p ( j Ω ) + j X n ( j Ω ) ) = 2 X p ( j Ω ) \begin{aligned} Y(j\Omega)&amp;=X(j\Omega)+j\hat{X}(j\Omega)\\ &amp;=X_p(j\Omega)+X_n(j\Omega)+j(-jX_p(j\Omega)+jX_n(j\Omega))\\ &amp;=2X_p(j\Omega) \end{aligned} Y(jΩ)=X(jΩ)+jX^(jΩ)=Xp(jΩ)+Xn(jΩ)+j(jXp(jΩ)+jXn(jΩ))=2Xp(jΩ)
返回目录

10.计算式
x a ( t ) = { e − α t , &ThinSpace; t ≥ 0 0 , &ThinSpace; t &lt; 0 x_a(t)= \begin{cases} e^{-\alpha t}, \, &amp;t \geq 0 \\ 0, \, &amp; t &lt; 0 \end{cases} xa(t)={eαt,0,t0t<0
中连续时间信号在 α = 0.6 \alpha=0.6 α=0.6时的总能量,并计算其 75 % 75\% 75%带宽。
解:
ε 2 = ∫ − ∞ ∞ x 2 ( t ) d t = ∫ − ∞ ∞ e − 2 α t d t = 1 2 α = 5 6 \varepsilon^2=\int_{-\infty}^\infty x^2(t)dt=\int_{-\infty}^\infty e^{-2\alpha t}dt = \frac{1}{2\alpha}=\frac{5}{6} ε2=x2(t)dt=e2αtdt=2α1=65
X ( j Ω ) = 1 α − j Ω X(j\Omega)=\frac{1}{\alpha-j\Omega} X(jΩ)=αjΩ1

1 2 π ∫ − Ω c Ω c X ( j Ω ) X ∗ ( j Ω ) d Ω = 1 2 π ∫ − Ω c Ω c 1 α 2 + Ω 2 d Ω = 0.75 ⋅ 1 2 α = 3 8 α \frac{1}{2\pi}\int_{-\Omega_c}^{\Omega_c}X(j\Omega)X^{*}(j\Omega)d\Omega=\frac{1}{2\pi}\int_{-\Omega_c}^{\Omega_c}\frac{1}{\alpha^2 + \Omega^2}d\Omega=0.75 \cdot \frac{1}{2\alpha}=\frac{3}{8\alpha} 2π1ΩcΩcX(jΩ)X(jΩ)dΩ=2π1ΩcΩcα2+Ω21dΩ=0.752α1=8α3

1 2 π ∫ − Ω c Ω c 1 α 2 + Ω 2 d Ω = 1 2 π ∫ − Ω c Ω c 1 α 1 1 + ( Ω α ) 2 d Ω α = 1 α π a r c t a n ( Ω c α ) \frac{1}{2\pi}\int_{-\Omega_c}^{\Omega_c}\frac{1}{\alpha^2 + \Omega^2}d\Omega=\frac{1}{2\pi}\int_{-\Omega_c}^{\Omega_c}\frac{1}{\alpha}\frac{1}{1+(\frac{\Omega}{\alpha})^2}d\frac{\Omega}{\alpha}=\frac{1}{\alpha\pi}arctan(\frac{\Omega_c}{\alpha}) 2π1ΩcΩcα2+Ω21dΩ=2π1ΩcΩcα11+(αΩ)21dαΩ=απ1arctan(αΩc)
⇒ a r c t a n ( Ω c α ) = 3 π 8 \Rightarrow arctan(\frac{\Omega_c}{\alpha})=\frac{3\pi}{8} arctan(αΩc)=83π
返回目录

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值