方向导数(Directional derivatives)

方向导数是衡量曲面上某点沿特定方向变化率的概念,它在数学分析中扮演重要角色。文章详细介绍了方向导数的定义,解释了其与偏导数的关系,并通过例子展示了如何计算方向导数。此外,还提到了方向导数存在的条件和计算公式,以及在三元函数中的应用。
摘要由CSDN通过智能技术生成

方向导数(Directional Derivatives)

提到方向导数,我们先来回顾一下**导数(Derivative)偏导数(Partial Derivative)**的几何意义。

  • 导数是二维平面中,曲线上某一点沿着x轴方向变化的速率,即函数 f ( x ) f(x) f(x)在该点的斜率;
  • 偏导数是在三维空间中,曲面上某一点沿着x轴方向或y轴方向变化的速率,即 ∂ f ∂ x 是函数 f ( x , y ) \frac{\partial f}{\partial x}\text{是函数}f(x,y) xf是函数f(x,y)沿着x轴方向的变化率, ∂ f ∂ y 是函数 f ( x , y ) \frac{\partial f}{\partial y}\text{是函数}f(x,y) yf是函数f(x,y)沿着y轴方向的变化率(坡度);

这里写图片描述

如图所示, ∂ f ∂ x \frac{\partial f}{\partial x} xf表示直线L2所在的斜率, ∂ f ∂ y \frac{\partial f}{\partial y} yf表示直线L1所在的斜率。

偏导数 f x ( x 0 , y 0 ) f_x(x_0,y_0) fx(x0,y0) f y ( x 0 , y 0 ) f_y(x_0,y_0) fy(x0,y0)反映的是曲面 z = f ( x , y ) z=f(x,y) z=f(x,y)上的点 ( x 0 , y 0 , f ( x 0 , y 0 ) ) (x_0,y_0,f(x_0,y_0)) (x0,y0,f(x0,y0)),沿x轴和y轴方向的坡度

  • 方向导数是在三维空间中,曲面上某一点沿着任一方向的变化率(坡度);

设二元函数 z = f ( x , y ) , M 0 ( x 0 , y 0 ) , z=f(x,y), M_0(x_0,y_0), z=f(x,y),M0(x0,y0),单位向量 l ⃗ = ( c o s α , c o s β ) \vec{l}=(cos\alpha,cos\beta) l =(cosα,cosβ),其中 c o s α , c o s β cos\alpha,cos\beta cosα,cosβ为方向余弦, α , β \alpha,\beta α,β分别为 l l l与x轴、y轴的夹角; M ( x 0 + ρ c o s α , y 0 + ρ c o s β ) M(x_0+\rho cos\alpha,y_0+\rho cos\beta) M(x0+ρcosα,y0+ρcosβ)

这里写图片描述

如上图,点 M 0 M_0 M0沿着 l ⃗ \vec{l} l 所在的方向移动,到达 M M M,其中 M 0 M → = ρ ⋅ l ⃗ ;   Δ x = ρ ⋅ c o s α ;   Δ y = ρ ⋅ c o s β ; \overrightarrow{M_0M}=\rho \cdot \vec{l};\text{ }\Delta x= \rho \cdot cos\alpha;\text{ }\Delta y= \rho \cdot cos\beta; M0M =ρl ; Δx=ρcosα; Δy=ρ

  • 65
    点赞
  • 198
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值