哪种LLM量化方法最适合您?:GGUF、GPTQ 还是 AWQ
1. GGUF:(GPT-Generated Unified Format, GPT 生成的统一格式)
GGUF 是 GGML 的后继者,由 llama.cpp 团队推出。它是一种专为大型语言模型设计的量化方法。它允许用户在 CPU 上运行 LLM,同时通过提供速度改进将一些层卸载到 GPU。GGUF 对于那些在 CPU 或 Apple 设备上运行模型的用户特别有用。在 GGUF 上下文中,量化涉及缩小模型权重(通常存储为 16 位浮点数)以节省计算资源。GGUF 是一种更高效、更灵活的存储和使用 LLM 进行推理的方法。它经过量身定制,可快速加载和保存模型,并采用用户友好的方法来处理模型文件。
总之,GGUF 代表了一种为灵活性而设计的新格式,专门用于在 CPU 和 Apple M 系列设备上运行,同时允许将某些层卸载到 GPU。
与 GPTQ 和 AWQ 的比较:
- GGUF 专注于 CPU 和 Apple M 系列设备,并可以通过将层卸载到 GPU 来提高速度。
- 它是 GGML 的演变,效率和用户友好性都有所提高。
- GGUF 具有其独特的文件格式和在 llama.cpp 中的支持,这使其与 GPTQ 和 AWQ 有所区别。
2. GPTQ:(Generalized Post-Training Quantization, 广义训练后量化)
GPTQ 是一种基于近似二阶信息的一次性权重量化方法。它由 Frantar 等人于 2023 年开发,旨在压缩大型语言模型并加速其性能。即使对于具有大量参数的模型(例如,GPT 模型中的 1750 亿个参数),GPTQ 也可以实现高精度和高效的量化。它主要专注于 GPU 推理和性能提升。GPTQ 支持量化到 8、4、3 甚至 2 位,而不会显著降低性能,并且推理速度更快。它已被集成到各种平台中,包括 NVIDIA TensorRT-LLM、FastChat、vLLM、HuggingFace TGI 和 LMDeploy。
总之,GPTQ 是一种一次性权重量化方法,它利用近似二阶信息来实现高度准确和高效的量化。
与 GGUF 和 AWQ 的比较:
- GPTQ 专注于 GPU 推理和量化级别的灵活性。
- 它支持广泛的量化位级别,并与大多数 GPU 硬件兼容。
- GPTQ 旨在在压缩增益和推理速度之间实现平衡。
3. AWQ:(Activation-Aware Weight Quantization, 激活感知权重量化)
AWQ 是由 MIT-HAN 实验室开发的一种激活感知权重量化方法。它通过观察激活而不是权重本身来保护显着权重。AWQ 实现了出色的量化性能,尤其是对于指令调整的 LM 和多模态 LM。它提供准确的量化并提供推理输出。AWQ 可以轻松减少用于模型服务的 GPU 内存并加快 token 生成速度。它已集成到各种平台中,包括 NVIDIA TensorRT-LLM、FastChat、vLLM、HuggingFace TGI 和 LMDeploy。
总之,AWQ 采用激活感知方法,通过观察激活来保护显着权重,并展示了出色的量化性能,尤其是对于指令调整的 LM。
与 GGUF 和 GPTQ 的比较:
- AWQ 采用激活感知方法,通过观察激活来实现权重量化。
- 它在指令调整的 LM 和多模态 LM 的量化性能方面表现出色。
- AWQ 提供了在资源受限的边缘平台上高效部署的turn-key解决方案。