哪种LLM量化方法最适合您?:GGUF、GPTQ 还是 AWQ
1. GGUF:(GPT-Generated Unified Format, GPT 生成的统一格式)
GGUF 是 GGML 的后继者,由 llama.cpp 团队推出。它是一种专为大型语言模型设计的量化方法。它允许用户在 CPU 上运行 LLM,同时通过提供速度改进将一些层卸载到 GPU。GGUF 对于那些在 CPU 或 Apple 设备上运行模型的用户特别有用。在 GGUF 上下文中,量化涉及缩小模型权重(通常存储为 16 位浮点数)以节省计算资源。GGUF 是一种更高效、更灵活的存储和使用 LLM 进行推理的方法。它经过量身定制,可快速加载和保存模型,并采用用户友好的方法来处理模型文件。
总之,GGUF 代表了一种为灵活性而设计的新格式,专门用于在 CPU 和 Apple M 系列设备上运行,同时允许将某些层卸载到 GPU。
与 GPTQ 和 AWQ 的比较:
- GGUF 专注于 CPU 和 Apple M 系列设备,并可以通过将层卸载到 GPU 来提高速度。
- 它是 GGML 的演变,效率和用户友好性都有所提高。
- GGUF 具有其独特的文件格式和在 llama.cpp 中的支持,这使其与 GPTQ 和 AWQ 有所区别。
2. GPTQ:(Generalized Post-Training Quantization, 广义训练后量化)
GPTQ 是一种基于近似二阶信息的一次性权重量化方法。它由 Frantar 等人于 2023 年开发,旨在压缩大型语言模型并加速其性能。即使对于具有大量参数的模型(例如ÿ