1-2 Tensor的属性

Tensor的属性在这里插入图片描述

Tensor的属性——稀疏的张量

  • torch.sparse_coo_tensor
  • coo类型表示了非零元素的坐标形式
indices = torch.tensor([[0,1,1],[2,0,2]])   # 非零元素的坐标(0,2),(1,0),(1,2)
values = torch.tensor([3,4,5],dtype=torch.float32)  # 对应非零元素的值3,4,5
x = torch.sparse_coo_tensor(indices,values,[2,4])  # 一个 2 X 4 的 tensor
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值