引言
阅读硕士论文,简单了解多帧图像处理算法,本篇为多帧图像复原算法
认识图片退化现象
主要分为两类:图像噪声和图像模糊,噪声具有随机性而模糊具有固定性。模糊根据成因可以分为两类:散焦模糊、运动模糊。散焦模糊由相机与景物之间的相对移动或者相机自动对焦不精确造成;运动模糊由成像传感器与被拍摄景物之间的相对移动造成,其中若取景相机和背景没有发生移动,而被拍摄物体运动,则图像存在局部模糊;若景物静止而相机发生晃动,则会出现全局模糊。手机相机拍摄的图片通常会出现全局模糊,毕竟手抖是自然的。
去除图像噪声和图像模糊使用的一般是不同的算法,两者也会相互影响,故实现噪声条件下的多图去模糊具有研究意义。
该论文的主要工作
在实际场景中采集到的多帧退化图像,在同一场景下多帧图像的协同复原算法和多帧图像存在相对运动时的多图复原算法。
图像复原和配准的基本理论
去噪
加性和乘性噪声。加性噪声一般只与外部干扰因素有关,乘性噪声与图像原始信号相关,随着图像信号的变化而变化。实际处理中,为了便于数学建模和分析,会将乘性噪声近似当做加性噪声,认为原始信号与噪声相互独立。噪声模型有很多种:高斯噪声、瑞丽噪声、伽马噪声、指数分布噪声、均匀分布噪声等等。
一般去噪使用中值滤波、均值滤波、高斯滤波等,该论文介绍了一种(2007 年,Buade)非局部均值滤波,基本思想是通过比较当前待滤波像素zzz的邻域与图片中的其他像素yyy的邻域的相似性,确定权值w(x,y)w(x,y)w(x,y),获得滤波后的像素值:
NL[v][x]=∑y∈Iw(x,y)v(y)NL[v][x]=\sum_{y\in I}{w(x,y)v(y)}NL[v][x]=y∈I∑w(x,y)v(y)
v(y)v(y)v(y)表示待滤波的图片在yyy点的像素值,NL[v][x]NL[v][x]NL[v][x]表示xxx点滤波后的值。
该非局部均值滤波算法的计算量大。
去模糊
模糊的本质为清晰图像和点扩散函数的卷积,求解点扩散函数是图像去模糊的关键。
经典算法:正则化方法。假设模糊模型具有线性不变性,这样将去模糊过程看做去卷积过程。
假设模糊模型具有线性不变性,图片受到加性白噪声,有模型:
u0(X)=k∗u(X)+n(X),X=(x1,x2)∈R2u_0(X)=k*u(X)+n(X),X=(x_1,x_2)\in R^2u

最低0.47元/天 解锁文章

1371

被折叠的 条评论
为什么被折叠?



