【每日一题Day138】LC1653使字符串平衡的最少删除次数 | 前后缀 动态规划

使字符串平衡的最少删除次数【LC1653】

给你一个字符串 s ,它仅包含字符 'a''b'

你可以删除 s 中任意数目的字符,使得 s 平衡 。当不存在下标对 (i,j) 满足 i < j ,且 s[i] = 'b' 的同时 s[j]= 'a' ,此时认为 s平衡 的。

请你返回使 s 平衡最少 删除次数。

这两天感觉脑子有点秀逗

前后缀分解

  • 思路:

    • 如果字符串是平衡的,那么所有的a都在所有b的左边,此时有两种特殊情况字符串全为a或者全部b
    • 那么我们可以枚举所有的分割线,将s分为前缀和后缀,并保证前缀都是a后缀都是b,那么我们需要统计前缀中b的个数和后缀中a的个数,删除的次数即为两者之和,记录最小值返回既可
  • 实现

    先统计整个后缀字符串中所有的a的个数,即为整个字符串都为b时需要的删除次数 d e l del del,然后右移分割线,如果当前字符是a,那么删除次数减小1,如果当前字符是b,那么删除字符增加1

    class Solution {
        public int minimumDeletions(String s) {
            // a全部在b的左边       
            int del = 0;
            for (char c : s.toCharArray()){
                if (c == 'a'){
                    del++;
                }
            }
            int res = del;
            for (char c : s.toCharArray()){
                if (c == 'a'){
                    del--;
                    res = Math.min(del, res);
                }else{
                    del++;
                }
                // 'a' -> -1    'b' -> 1
                // del += (c - 'a') * 2 - 1;            
            }
        return res;
    
    
        }
    }
    
    • 复杂度
      • 时间复杂度: O ( n ) O(n) O(n)
      • 空间复杂度: O ( 1 ) O(1) O(1)

动态规划

  • 思路:

    考虑s的某个字母对结果的影响

    • 如果s[i]是b,那么不需要删除,s[0,i]为平衡字符串所需要的次数即为s[0,i-1]为平衡字符串的次数
    • 如果s[i]是a,那么即可以保留它也可以删除它
      • 保留它,那么需要删除s[0,i-1]中所有的b
      • 删除它,s[0,i]为平衡字符串所需要的次数即为「s[0,i-1]为平衡字符串的次数」+1

    因此可以使用动态规划实现

  • 动态规划

    1. 确定dp数组(dp table)以及下标的含义

      dp[i]为使s的前i个字母平衡的最少删除次数

    2. 确定递推公式

      • 如果s[i]是b
        d p [ i ] = d p [ i − 1 ] dp[i]= dp[i-1] dp[i]=dp[i1]

      • 如果s[i]是a,那么即可以保留它也可以删除它
        d p [ i ] = m i n ( d p [ i − 1 ] + 1 , c n t B ) dp[i]=min(dp[i-1]+1,cntB) dp[i]=min(dp[i1]+1,cntB)

    3. dp数组如何初始化

      dp[0] = 0;
      
    4. 确定遍历顺序

      从前往后遍历nums

    5. 举例推导dp数组

    class Solution {
        public int minimumDeletions(String s) {
            int n = s.length();
            int[] dp = new int[n + 1];
            dp[0] = 0;
            int cntB = 0;
            for (int i = 0; i < n; i++){
                if (s.charAt(i) == 'b'){
                    dp[i + 1] = dp[i];
                    cntB++;
                }else{
                    dp[i + 1] = Math.min(dp[i] + 1, cntB);
                }
            }       
            return dp[n];
    
        }
    }
    
    • 复杂度
      • 时间复杂度: O ( n ) O(n) O(n)
      • 空间复杂度: O ( n ) O(n) O(n)
  • 优化空间复杂度

    class Solution {
        public int minimumDeletions(String s) {
            int n = s.length();
            int dp = 0;
            int cntB = 0;
            for (int i = 0; i < n; i++){
                if (s.charAt(i) == 'b'){
                    cntB++;
                }else{
                    dp = Math.min(dp + 1, cntB);
                }
            }
            return dp;
    
        }
    }
    
    • 复杂度
      • 时间复杂度: O ( n ) O(n) O(n)
      • 空间复杂度: O ( 1 ) O(1) O(1)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值