【每日一题Day147】LC1615最大网络秩 | 枚举 哈希表

给定n座城市和道路连接,文章描述了一个算法来计算所有城市对的最大网络秩,即直接相连的道路数量。算法通过哈希表存储每个城市的可达性,然后枚举所有城市对计算网络秩,最终返回最大值。时间复杂度为O(n^2),空间复杂度也为O(n^2)。
摘要由CSDN通过智能技术生成

最大网络秩【LC1615】

n 座城市和一些连接这些城市的道路 roads 共同组成一个基础设施网络。每个 roads[i] = [ai, bi] 都表示在城市 aibi 之间有一条双向道路。

两座不同城市构成的 城市对网络秩 定义为:与这两座城市 直接 相连的道路总数。如果存在一条道路直接连接这两座城市,则这条道路只计算 一次

整个基础设施网络的 最大网络秩 是所有不同城市对中的 最大网络秩

给你整数 n 和数组 roads,返回整个基础设施网络的 最大网络秩

这个交换机的声音真受不了了 还不能带耳机 泪目

  • 思路:

    枚举所有的城市对,如果两个城市之间可达,那么网络秩为这两个城市的出度之和-1;如果两个城市之间不可达,那么网络秩为两个城市的出度之和

  • 实现

    使用哈希表存储每个城市可以到达的其他城市,那么出度即为哈希表的大小,如果哈希表中包含另一个城市,那么表示这两个城市可达

    class Solution {
        public int maximalNetworkRank(int n, int[][] roads) {
            Set<Integer>[] g = new Set[n];
            Arrays.setAll(g, e -> new HashSet<>());
            for (int[] road :roads){
                int u = road[0], v = road[1];
                g[u].add(v);
                g[v].add(u);
            }
            int res = 0;
            for (int i = 0; i < n; i++){
                for (int j = i + 1; j < n; j++){
                    int count = g[i].size() + g[j].size() + (g[i].contains(j) ? -1 : 0);
    
                    res = Math.max(res, count);
                }
            }
            return res;
    
    
        }
    }
    
    • 复杂度分析
      • 时间复杂度: O ( n 2 ) O(n^2) O(n2)
      • 空间复杂度: O ( n 2 ) O(n^2) O(n2)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值