【已更新完整word论文与代码!】
我是Tina表姐,毕业于中国人民大学,对数学建模的热爱让我在这一领域深耕多年。我的建模思路已经帮助了百余位学习者和参赛者在数学建模的道路上取得了显著的进步和成就。现在,我将这份宝贵的经验和知识凝练成一份全面的解题思路与代码论文集合,专为本次赛题设计,旨在帮助您深入理解数学建模的每一个环节。
本次妈妈杯B题可以做如下考虑 (部分公式和代码因为排版问题显示不完整,文中代码仅有部分,完整论文格式标准,包含全部代码)
完整内容均可以在文章末尾领取!(部分代码在本帖子里格式混乱,下载后格式正常)
问题一:搬迁补偿建模
1. 模型建立
为了设计合理的搬迁补偿方案,我们需要建立一个数学模型,综合考虑住户房屋的朝向、面积、布局、心理价位、住宿舒适度等因素。以下是模型的详细描述:
1.1 决策变量
- $ x_i $: 二进制变量,表示第 $ i $ 户居民是否搬迁(1表示搬迁,0表示不搬迁)。
- $ y_{ij} $: 二进制变量,表示第 $ i $ 户居民是否搬迁到第 $ j $ 个空置地块(1表示搬迁,0表示不搬迁)。
- $ z_i $: 二进制变量,表示是否对第 $ i $ 户居民的迁入地块进行修缮(1表示修缮,0表示不修缮)。
1.2 目标函数
目标是最大化居民的搬迁意愿,同时最小化开发商的成本。因此,目标函数可以表示为:
Maximize ∑ i x i − λ ( ∑ i Cost i ) \text{Maximize} \quad \sum_{i} x_i - \lambda \left( \sum_{i} \text{Cost}_i \right) Maximizei∑xi−λ(i∑Costi)
其中,$ \lambda $ 是一个权重系数,用于平衡搬迁意愿和成本。
1.3 约束条件
-
面积补偿约束:
A j ≥ A i ∀ i , j such that y i j = 1 A_{j} \geq A_{i} \quad \forall i, j \text{ such that } y_{ij} = 1 Aj≥Ai∀i,j such that yij=1A j ≤ 1.3 × A i ∀ i , j such that y i j = 1 A_{j} \leq 1.3 \times A_{i} \quad \forall i, j \text{ such that } y_{ij} = 1 Aj≤1.3×Ai∀i,j such that yij=1
其中,$ A_{j} $ 是迁入地块的面积,$ A_{i} $ 是现居地块的面积。
-
采光补偿约束:
C j ≥ C i ∀ i , j such that y i j = 1 C_{j} \geq C_{i} \quad \forall i, j \text{ such that } y_{ij} = 1 Cj≥Ci∀i,j such that yij=1
其中,$ C_{j} $ 是迁入地块的采光舒适度,$ C_{i} $ 是现居地块的采光舒适度。 -
修缮补偿约束:
z i ≤ x i ∀ i z_i \leq x_i \quad \forall i zi≤xi∀i∑ i z i × RenovationCost i ≤ Budget \sum_{i} z_i \times \text{RenovationCost}_i \leq \text{Budget} i∑zi×RenovationCosti≤Budget
其中,$ \text{RenovationCost}_i $ 是对第 $ i $ 户居民的迁入地块进行修缮的成本,$ \text{Budget} $ 是开发商的修缮预算。
-
搬迁决策约束:
x i = ∑ j y i j ∀ i x_i = \sum_{j} y_{ij} \quad \forall i xi=j∑yij∀i∑ i y i j ≤ 1 ∀ j \sum_{i} y_{ij} \leq 1 \quad \forall j i∑yij≤1∀j
这些约束确保每户居民只能搬迁到一个空置地块,且每个空置地块只能被一户居民占用。
1.4 其他影响因素
除了上述因素外,以下因素也可能影响住户是否同意搬迁:
- 迁入迁出地块离街道的距离:离街道较近的地块通常更方便,住户可能更愿意搬迁到这样的地块。
- 地块周边的房屋密集程度:周边房屋密集程度较低的地块可能更安静,住户可能更愿意搬迁到这样的地块。
- 社区配套设施:迁入地块周边的配套设施(如学校、医院、超市等)是否齐全也会影响住户的搬迁意愿。
- 心理价位:住户对搬迁的心理预期价格也是一个重要因素,开发商需要根据住户的心理价位进行合理的补偿。
2. 模型求解
该模型是一个混合整数线性规划(MILP)问题,可以使用优化软件(如CPLEX、Gurobi等)进行求解。求解结果将给出每户居民是否搬迁、搬迁到哪个空置地块、是否进行修缮等决策。
3. 结果分析
通过求解模型,可以得到以下结果:
- 搬迁方案:哪些居民需要搬迁,搬迁到哪些空置地块。
- 修缮方案:哪些迁入地块需要进行修缮。
- 成本分析:搬迁和修缮的总成本。
- 搬迁意愿:居民的搬迁意愿是否得到满足。
通过分析这些结果,规划局和开发商可以制定出合理的搬迁补偿方案,有效推动居民同意搬迁。
1. 搬迁补偿方案设计
搬迁补偿方案需要综合考虑住户房屋的朝向、面积、布局、心理价位、住宿舒适度等因素。以下是具体的补偿策略:
-
面积补偿:居民搬迁后,迁入地块的面积不能比现居地块更小,且最多只能提供面积比原来多30%的产权地块。面积补偿的计算公式为:
A 新 ≥ A 旧 且 A 新 ≤ 1.3 × A 旧 A_{\text{新}} \geq A_{\text{旧}} \quad \text{且} \quad A_{\text{新}} \leq 1.3 \times A_{\text{旧}} A新≥A旧且A新≤1.3×A旧
其中, A 新 A_{\text{新}} A新 是迁入地块的面积, A 旧 A_{\text{旧}} A旧 是现居地块的面积。 -
采光补偿:居民搬迁后,迁入地块的采光不能比现居地块更差。采光舒适度排序为:正南 = 正北 > 东厢 > 西厢。采光补偿的规则为:
C 新 ≥ C 旧 C_{\text{新}} \geq C_{\text{旧}} C新≥C旧
其中, C 新 C_{\text{新}} C新 是迁入地块的采光舒适度, C 旧 C_{\text{旧}} C旧 是现居地块的采光舒适度。 -
修缮补偿:若搬迁地块的面积和采光补偿不足以推动居民搬迁,开发商可以对迁入地块的房屋进行修缮翻新,修缮成本上限为20万元。修缮补偿的决策依据为:
R 新 ≥ R