边缘计算场景下基于超轻量级目标检测模型实现裸土扬尘检测

本文介绍了如何在边缘计算场景中使用超轻量级目标检测模型FastestDet进行裸土扬尘检测。针对资源有限的设备,作者强调了选择合适模型的重要性,而非依赖大型模型进行剪枝和量化。通过详细步骤展示了数据集准备、模型训练、模型转换为ONNX格式的过程,并展示了模型在不同图像上的检测效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目标检测任务已经是有比较成熟解决方案的了,很多不同的检测方法和算法模型层出不穷,很多时候我们看到论文中描述的fps都可以轻松突破几十甚至是几百,这个的确是很诱人的数据结果,比如YOLOv3将近250MB大小的模型fps都能这么高:

 这个不能说数据假,而是要清楚明白这样的测试结果是在什么样的硬件水平下面测试得到的,拿到的硬件指标就不难理解这个数据了,但是在实际业务场景里面,很多时候不可能给你都配备那么高级的GPU显卡设备,甚至很多时候就连一块好的CPU都没有,只有在比较弱的算力下完成计算,而且还要保证近乎实时性的要求,我在最开始的时候很多模型都尝试过,但是最终的推理时间太过于感人,比如:YOLOv3、YOLOv4等等,这样的模型太过于庞大,虽然模型的检测精度本身是不错的,但是没有办法实际落地应用。

在轻量级或者是超轻量级模型方面,很多大神或者是公司都有过尝试,我们之前也都从剪枝、量化、蒸馏等几方面进行过尝试,的确是比较耗费精力,因为实际的业务场景是比较多的,不能在单个业务场景下耽误太久的时间精力,图像

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Together_CZ

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值