基于轻量级YOLOv5开发构建金属瓶盖缺陷检测识别分析系统

文章介绍了针对金属瓶盖缺陷检测的实践,利用YOLOv5n系列模型进行训练。数据集包含YOLO和VOC两种格式的标注文件,模型参数进行了定制,以适应特定的检测任务。训练结果表明模型能有效识别不同类型的缺陷。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

缺陷检测相关的实践在之前也都有做过不少了,这里的缺陷跟以往的缺陷不同,这个主要是金属瓶盖,比如:啤酒瓶盖子、饮料瓶盖子等的缺陷检测,首先看下效果图:

简单看下数据集:

YOLO格式标注文件如下:

实例标注内容如下:

0 0.811035 0.591146 0.15332 0.304688

VOC格式标注文件如下:

实例标注内容如下所示:

<annotation>
    <folder>DATASET</folder>
    <filename>JPEGImages/0ac43270-e82b-492f-9816-f0d7d8f49114.jpg</filename>
    <source>
        <database>The DATASET Database</database>
        <annotation>DATASET</annotation>
        <image>DATASET</image>
    </source>
    <owner>
        <name>YMGZS</name>
    </owner>    
    <size>
        <width>1024</width>
        <height>768</height>
        <depth>3</depth>
    </size>
    <segmented>0</segmented>
    
    <object>        
        <name>defeat</name>
        <pose>Unspecified</pose>
        <truncated>0</truncated>
        <difficult>0</difficult>
        <bndbox>
            <xmin>712</xmin>
            <ymin>336</ymin>
            <xmax>848</xmax>
            <ymax>548</ymax>
        </bndbox>
    </object>
    
</annotation>

使用的是yolov5n系列的模型来训练,如下:

#Parameters
nc: 5  # number of classes
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.25  # layer channel multiple
anchors:
  - [10,13, 16,30, 33,23]  # P3/8
  - [30,61, 62,45, 59,119]  # P4/16
  - [116,90, 156,198, 373,326]  # P5/32


#Backbone
backbone:
  # [from, number, module, args]
  [[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2
   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
   [-1, 3, C3, [128]],
   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
   [-1, 6, C3, [256]],
   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
   [-1, 9, C3, [512]],
   [-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32
   [-1, 3, C3, [1024]],
   [-1, 1, SPPF, [1024, 5]],  # 9
  ]


#Head
head:
  [[-1, 1, Conv, [512, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 6], 1, Concat, [1]],  # cat backbone P4
   [-1, 3, C3, [512, False]],  # 13

   [-1, 1, Conv, [256, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 4], 1, Concat, [1]],  # cat backbone P3
   [-1, 3, C3, [256, False]],  # 17 (P3/8-small)

   [-1, 1, Conv, [256, 3, 2]],
   [[-1, 14], 1, Concat, [1]],  # cat head P4
   [-1, 3, C3, [512, False]],  # 20 (P4/16-medium)

   [-1, 1, Conv, [512, 3, 2]],
   [[-1, 10], 1, Concat, [1]],  # cat head P5
   [-1, 3, C3, [1024, False]],  # 23 (P5/32-large)

   [[17, 20, 23], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)
  ]

结果详情如下:

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Together_CZ

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值