缺陷检测相关的实践在之前也都有做过不少了,这里的缺陷跟以往的缺陷不同,这个主要是金属瓶盖,比如:啤酒瓶盖子、饮料瓶盖子等的缺陷检测,首先看下效果图:

简单看下数据集:

YOLO格式标注文件如下:

实例标注内容如下:
0 0.811035 0.591146 0.15332 0.304688
VOC格式标注文件如下:

实例标注内容如下所示:
<annotation>
<folder>DATASET</folder>
<filename>JPEGImages/0ac43270-e82b-492f-9816-f0d7d8f49114.jpg</filename>
<source>
<database>The DATASET Database</database>
<annotation>DATASET</annotation>
<image>DATASET</image>
</source>
<owner>
<name>YMGZS</name>
</owner>
<size>
<width>1024</width>
<height>768</height>
<depth>3</depth>
</size>
<segmented>0</segmented>
<object>
<name>defeat</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>712</xmin>
<ymin>336</ymin>
<xmax>848</xmax>
<ymax>548</ymax>
</bndbox>
</object>
</annotation>
使用的是yolov5n系列的模型来训练,如下:
#Parameters
nc: 5 # number of classes
depth_multiple: 0.33 # model depth multiple
width_multiple: 0.25 # layer channel multiple
anchors:
- [10,13, 16,30, 33,23] # P3/8
- [30,61, 62,45, 59,119] # P4/16
- [116,90, 156,198, 373,326] # P5/32
#Backbone
backbone:
# [from, number, module, args]
[[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
[-1, 3, C3, [128]],
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
[-1, 6, C3, [256]],
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
[-1, 9, C3, [512]],
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
[-1, 3, C3, [1024]],
[-1, 1, SPPF, [1024, 5]], # 9
]
#Head
head:
[[-1, 1, Conv, [512, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
[[-1, 6], 1, Concat, [1]], # cat backbone P4
[-1, 3, C3, [512, False]], # 13
[-1, 1, Conv, [256, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
[[-1, 4], 1, Concat, [1]], # cat backbone P3
[-1, 3, C3, [256, False]], # 17 (P3/8-small)
[-1, 1, Conv, [256, 3, 2]],
[[-1, 14], 1, Concat, [1]], # cat head P4
[-1, 3, C3, [512, False]], # 20 (P4/16-medium)
[-1, 1, Conv, [512, 3, 2]],
[[-1, 10], 1, Concat, [1]], # cat head P5
[-1, 3, C3, [1024, False]], # 23 (P5/32-large)
[[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
]
结果详情如下:



