探索水下低光照图像检测性能,基于DETR(DEtection TRansformer)模型开发构建海底生物检测识别分析系统

海底这类特殊数据场景下的检测模型开发相对来说比较少,在前面的博文中也有一些涉及,感兴趣的话可以自行移步阅读即可:

《尝试探索水下目标检测,基于yolov5轻量级系列模型n/s/m开发构建海底生物检测系统》

《基于YOLOv5+C3CBAM+CBAM注意力的海底生物[海参、海胆、扇贝、海星]检测识别分析系统》

《基于自建数据集【海底生物检测】使用YOLOv5-v6.1/2版本构建目标检测模型超详细教程》 

《探索水下低光照图像检测性能,基于轻量级YOLOv8模型开发构建海底生物检测识别分析系统》

《探索水下低光照图像检测性能,基于YOLOv7【tiny/l/x】不同系列参数模型开发构建海底生物检测识别分析系统》

《探索水下低光照图像检测性能,基于YOLOv8全系列【n/s/m/l/x】参数模型开发构建海底生物检测识别分析系统》

在前文我们已经实践开发了YOLO系列的模型,本文的主要想法是想要基于DETR来开发构建海底生物检测识别系统。

首先看下实例效果:

DETR (DEtection TRansformer) 是一种基于Transformer架构的端到端目标检测模型。与传统的基于区域提议的目标检测方法(如Faster R-CNN)不同,DETR采用了全新的思路,将目标检测问题转化为一个序列到序列的问题,通过Transformer模型实现目标检测和目标分类的联合训练。

DETR的工作流程如下:

输入图像通过卷积神经网络(CNN)提取特征图。
特征图作为编码器输入,经过一系列的编码器层得到图像特征的表示。
目标检测问题被建模为一个序列到序列的转换任务,其中编码器的输出作为解码器的输入。
解码器使用自注意力机制(self-attention)对编码器的输出进行处理,以获取目标的位置和类别信息。
最终,DETR通过一个线性层和softmax函数对解码器的输出进行分类,并通过一个线性层预测目标框的坐标。
DETR的优点包括:

端到端训练:DETR模型能够直接从原始图像到目标检测结果进行端到端训练,避免了传统目标检测方法中复杂的区域提议生成和特征对齐的过程,简化了模型的设计和训练流程。
不受固定数量的目标限制:DETR可以处理变长的输入序列,因此不受固定数量目标的限制。这使得DETR能够同时检测图像中的多个目标,并且不需要设置预先确定的目标数量。
全局上下文信息:DETR通过Transformer的自注意力机制,能够捕捉到图像中不同位置的目标之间的关系,提供了更大范围的上下文信息。这有助于提高目标检测的准确性和鲁棒性。
然而,DETR也存在一些缺点:

计算复杂度高:由于DETR采用了Transformer模型,它在处理大尺寸图像时需要大量的计算资源,导致其训练和推理速度相对较慢。
对小目标的检测性能较差:DETR模型在处理小目标时容易出现性能下降的情况。这是因为Transformer模型在处理小尺寸目标时可能会丢失细节信息,导致难以准确地定位和分类小目标。

简单看下实例数据情况:

官方项目地址在这里,如下所示:

可以看到目前已经收获了超过1.2w的star量,还是很不错的了。

如果对如何使用DETR模型来开发构建自己的个性化目标检测模型有疑问的话,可以参考我的超详细教程文章,如下:

《DETR (DEtection TRansformer)基于自建数据集开发构建目标检测模型超详细教程》

DETR整体数据流程示意图如下所示:

官方也提供了对应的预训练模型,可以自行使用:

本文选择的预训练官方权重是detr-r50-e632da11.pth,首先需要基于官方的预训练权重开发能够用于自己的 个性化数据集的权重,如下所示:

pretrained_weights = torch.load("./weights/detr-r50-e632da11.pth")
num_class = 4 + 1
pretrained_weights["model"]["class_embed.weight"].resize_(num_class+1,256)
pretrained_weights["model"]["class_embed.bias"].resize_(num_class+1)
torch.save(pretrained_weights,'./weights/detr_r50_%d.pth'%num_class)

即可启动训练,训练启动如下:

训练计算完成输出如下:

训练耗时将近3天。

等待训练完成后,借助于评估模块对结果进行评估对比可视化:

iter 000: mAP@50= 54.8, score=0.672, f1=0.645
iter 050: mAP@50= 78.8, score=0.833, f1=0.848
iter latest: mAP@50= 79.8, score=0.827, f1=0.849
iter 000: mAP@50= 54.8, score=0.672, f1=0.645
iter 050: mAP@50= 78.8, score=0.833, f1=0.848
iter latest: mAP@50= 79.8, score=0.827, f1=0.849

接下来详细看下指标详情。

【Precision曲线】
精确率曲线(Precision-Recall Curve)是一种用于评估二分类模型在不同阈值下的精确率性能的可视化工具。它通过绘制不同阈值下的精确率和召回率之间的关系图来帮助我们了解模型在不同阈值下的表现。精确率(Precision)是指被正确预测为正例的样本数占所有预测为正例的样本数的比例。召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。
【Recall曲线】
召回率曲线(Recall Curve)是一种用于评估二分类模型在不同阈值下的召回率性能的可视化工具。它通过绘制不同阈值下的召回率和对应的精确率之间的关系图来帮助我们了解模型在不同阈值下的表现。召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。召回率也被称为灵敏度(Sensitivity)或真正例率(True Positive Rate)。
【F1值曲线】
F1值曲线是一种用于评估二分类模型在不同阈值下的性能的可视化工具。它通过绘制不同阈值下的精确率(Precision)、召回率(Recall)和F1分数的关系图来帮助我们理解模型的整体性能。
F1分数是精确率和召回率的调和平均值,它综合考虑了两者的性能指标。F1值曲线可以帮助我们确定在不同精确率和召回率之间找到一个平衡点,以选择最佳的阈值。

loss可视化如下所示:

感兴趣的话可以自行动手实践尝试下!

如果自己不具备开发训练的资源条件或者是没有时间自己去训练的话这里我提供出来对应的训练结果可供自行按需索取。

模型训练结果

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Together_CZ

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值