目标检测系列的算法模型可以说是五花八门,不同的系列有不同的理论依据,DETR的亮点在于它是完全端到端的第一个目标检测模型,DETR(Detection Transformer)是一种基于Transformer的目标检测模型,由Facebook AI Research开发。它采用了端到端的方法,在目标检测任务中同时完成目标定位和分类。DETR模型结合了Transformer的自注意力机制和编码器-解码器结构。通过将图像作为输入,并使用Transformer解码器来生成预测框和对应的类别。与传统的目标检测方法不同,DETR不需要使用锚框或候选区域,而是直接从全局观察中生成预测。
DETR模型的训练过程包括两个阶段:首先,使用交叉熵损失函数对预测框和类别进行监督学习;然后,使用匈牙利算法将预测框与真实框进行匹配,计算IoU损失以进一步优化预测结果。DETR模型在目标检测任务上取得了很好的性能,并且具有较高的效率和灵活性。它可以应用于多种场景,如物体检测、实例分割等任务。
DETR官方项目地址在这里,如下所示: