无人机助力道路智能养护,基于YOLOv8全系列【n/s/m/l/x】参数模型开发构建无人机航拍道路交通场景下水泥路面缺陷智能检测识别系统

​道路养护是保障交通命脉安全的隐形防线,其重要性不亚于道路建设本身。我国每年因道路病害引发的交通事故占比高达12%,及时修复1平方米的早期裂缝可避免后续数万元的修复成本。在这场与道路病害赛跑的战役中,传统养护模式正遭遇前所未有的挑战,而人工智能与无人机技术的融合应用,正在重构道路养护的底层逻辑。

一、传统巡检困境:人力与效率的掣肘

传统道路巡检高度依赖"老师傅"的经验判断,养护工需驾驶巡检车以低于60km/h的速度逐段排查,日均有效巡检里程不足80公里。这种模式存在三重先天缺陷:其一,人工目检存在30%以上的漏检率,尤其在下雨、夜间等恶劣环境下效率骤降;其二,从发现病害到修复的平均响应周期长达72小时,期间病害可能持续扩展;其三,养护工需长时间暴露在车流中作业,存在重大安全隐患。

某市政公司测算显示,要维持100公里高速公路的常规养护,需配置3台巡检车、6名专业人员,年直接成本超过400万元。这种重资产运营模式在应对突发灾害时更显捉襟见肘,暴雨过后常出现数十处积水点,传统巡检团队需3-5天才能完成全域排查。

二、技术赋能:无人机巡检的颠覆性突破

搭载多光谱成像仪与边缘计算模块的无人机系统,正在重塑道路养护的作业范式。以深圳试点项目为例,单架无人机可在2小时内完成20公里双向6车道路面的毫米级扫描,效率提升8倍。其核心技术突破体现在三个方面:

多维感知矩阵:结合4K视频流与三维点云数据,构建路面数字孪生模型,裂缝识别精度达0.2mm,可穿透积水识别深层结构损伤
边缘-云协同计算:机载算力盒子实现实时图像分析,遇疑似病害立即触发多角度复拍,关键数据同步回传至养护平台
智能决策系统:AI模型自动关联病害类型与养护方案库,生成包含优先级、材料需求、施工时段建议的智能工单
在极端天气场景下,无人机可突破人工巡检的物理限制。去年郑州暴雨期间,无人机集群在4小时内完成全城高架快速路巡检,发现12处桥体渗水隐患,为应急抢险赢得关键窗口期。

三、体系重构:从被动响应到主动预防

无人机巡检催生的不仅是效率革命,更是养护理念的质变。通过持续的数据积累,AI系统开始展现预测性养护能力:

时空演化模型:分析病害发展轨迹,预测未来72小时裂缝扩展概率,提前调度养护资源
交通流耦合分析:识别重载车辆频繁作用路段,动态调整巡检密度
全生命周期管理:建立道路数字档案,精准预测路面使用寿命,优化大中修计划
在长三角某智慧公路示范区,无人机巡检使预防性养护比例从35%提升至78%,道路服役寿命延长40%,年养护成本降低26%。这种降本增效不仅体现在经济维度,更转化为显著的碳减排效益——据测算,每减少1公里道路大修,可降低碳排放约12吨。本文正是在这样的思考背景下,想要从实验的角度来探索构建无人机航拍场景下的路面病害缺陷智能化检测识别系统,在前文中我们已经进行了相关的开发实践感兴趣的话可以自行移步阅读即可:

《无人机助力道路智能养护,基于YOLOv5全系列【n/s/m/l/x】参数模型开发构建无人机航拍道路交通场景下水泥路面缺陷智能检测识别系统》

《无人机助力道路智能养护,基于YOLOv7全系列【tiny/l/x】参数模型开发构建无人机航拍道路交通场景下水泥路面缺陷智能检测识别系统》

本文主要是基于YOLOv8全系列的模型来进行相应的开发构建,首先看下实例效果:

接下来看下实例数据:

如果对YOLOv8开发构建自己的目标检测项目有疑问的可以看下面的文章,如下所示:

《基于YOLOv8开发构建目标检测模型超详细教程【以焊缝质量检测数据场景为例】》

非常详细的开发实践教程。本文这里就不再展开了,因为从YOLOv8开始变成了一个安装包的形式,整体跟v5和v7的使用差异还是比较大的。

YOLOv8核心特性和改动如下:
1、提供了一个全新的SOTA模型(state-of-the-art model),包括 P5 640 和 P6 1280 分辨率的目标检测网络和基于YOLACT的实例分割模型。和 YOLOv5 一样,基于缩放系数也提供了 N/S/M/L/X 尺度的不同大小模型,用于满足不同场景需求
2、骨干网络和 Neck 部分可能参考了 YOLOv7 ELAN 设计思想,将 YOLOv5 的 C3 结构换成了梯度流更丰富的 C2f 结构,并对不同尺度模型调整了不同的通道数,属于对模型结构精心微调,不再是一套参数应用所有模型,大幅提升了模型性能。
3、Head 部分相比 YOLOv5 改动较大,换成了目前主流的解耦头结构,将分类和检测头分离,同时也从Anchor-Based 换成了 Anchor-Free
4、Loss 计算方面采用了TaskAlignedAssigner正样本分配策略,并引入了Distribution Focal Loss
5、训练的数据增强部分引入了 YOLOX 中的最后 10 epoch 关闭 Mosiac 增强的操作,可以有效地提升精度

官方项目地址在这里,如下所示:

目前已经收获了超过3.3w的star量,还是很出色的了。

官方提供的基于COCO数据集的预训练模型如下所示:

除了常规的目标检测任务之外,还有旋转目标检测,如下:

是基于DOTAv1数据集训练得到的。

YOLOv8的定位不仅仅是目标检测,而是性能强大全面的工具库,故而在任务类型上同时支持:姿态估计、检测、分类、分割、跟踪多种类型,可以根据自己的需要进行选择使用,这里就不再详细展开了。

简单的实例实现如下所示:

from ultralytics import YOLO
 
# yolov8n
model = YOLO('yolov8n.yaml').load('yolov8n.pt')  # build from YAML and transfer weights
model.train(data='data/self.yaml', epochs=100, imgsz=640)
 
 
# yolov8s
model = YOLO('yolov8s.yaml').load('yolov8s.pt')  # build from YAML and transfer weights
model.train(data='data/self.yaml', epochs=100, imgsz=640)
 
 
# yolov8m
model = YOLO('yolov8m.yaml').load('yolov8m.pt')  # build from YAML and transfer weights
model.train(data='data/self.yaml', epochs=100, imgsz=640)
 
 
# yolov8l
model = YOLO('yolov8l.yaml').load('yolov8l.pt')  # build from YAML and transfer weights
model.train(data='data/self.yaml', epochs=100, imgsz=640)
 
 
# yolov8x
model = YOLO('yolov8x.yaml').load('yolov8x.pt')  # build from YAML and transfer weights
model.train(data='data/self.yaml', epochs=100, imgsz=640)

这里我们依次选择n、s、m、l和x五款不同参数量级的模型来进行开发。

这里给出yolov8的模型文件如下:

# Parameters
nc: 6  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPs
  s: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPs
  m: [0.67, 0.75, 768]   # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPs
  l: [1.00, 1.00, 512]   # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs
  x: [1.00, 1.25, 512]   # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs
 
# YOLOv8.0n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, Conv, [64, 3, 2]]  # 0-P1/2
  - [-1, 1, Conv, [128, 3, 2]]  # 1-P2/4
  - [-1, 3, C2f, [128, True]]
  - [-1, 1, Conv, [256, 3, 2]]  # 3-P3/8
  - [-1, 6, C2f, [256, True]]
  - [-1, 1, Conv, [512, 3, 2]]  # 5-P4/16
  - [-1, 6, C2f, [512, True]]
  - [-1, 1, Conv, [1024, 3, 2]]  # 7-P5/32
  - [-1, 3, C2f, [1024, True]]
  - [-1, 1, SPPF, [1024, 5]]  # 9
 
# YOLOv8.0n head
head:
  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 6], 1, Concat, [1]]  # cat backbone P4
  - [-1, 3, C2f, [512]]  # 12
 
  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 4], 1, Concat, [1]]  # cat backbone P3
  - [-1, 3, C2f, [256]]  # 15 (P3/8-small)
 
  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 12], 1, Concat, [1]]  # cat head P4
  - [-1, 3, C2f, [512]]  # 18 (P4/16-medium)
 
  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 9], 1, Concat, [1]]  # cat head P5
  - [-1, 3, C2f, [1024]]  # 21 (P5/32-large)
 
  - [[15, 18, 21], 1, Detect, [nc]]  # Detect(P3, P4, P5)

囊括了五款不同参数量级的模型。在训练结算保持相同的参数设置,等待训练完成后我们横向对比可视化来整体对比分析。

【Precision曲线】
精确率曲线(Precision Curve)是一种用于评估二分类模型在不同阈值下的精确率性能的可视化工具。它通过绘制不同阈值下的精确率和召回率之间的关系图来帮助我们了解模型在不同阈值下的表现。
精确率(Precision)是指被正确预测为正例的样本数占所有预测为正例的样本数的比例。召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。
绘制精确率曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的精确率和召回率。
将每个阈值下的精确率和召回率绘制在同一个图表上,形成精确率曲线。
根据精确率曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
通过观察精确率曲线,我们可以根据需求确定最佳的阈值,以平衡精确率和召回率。较高的精确率意味着较少的误报,而较高的召回率则表示较少的漏报。根据具体的业务需求和成本权衡,可以在曲线上选择合适的操作点或阈值。
精确率曲线通常与召回率曲线(Recall Curve)一起使用,以提供更全面的分类器性能分析,并帮助评估和比较不同模型的性能。

【Recall曲线】
召回率曲线(Recall Curve)是一种用于评估二分类模型在不同阈值下的召回率性能的可视化工具。它通过绘制不同阈值下的召回率和对应的精确率之间的关系图来帮助我们了解模型在不同阈值下的表现。
召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。召回率也被称为灵敏度(Sensitivity)或真正例率(True Positive Rate)。
绘制召回率曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的召回率和对应的精确率。
将每个阈值下的召回率和精确率绘制在同一个图表上,形成召回率曲线。
根据召回率曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
通过观察召回率曲线,我们可以根据需求确定最佳的阈值,以平衡召回率和精确率。较高的召回率表示较少的漏报,而较高的精确率意味着较少的误报。根据具体的业务需求和成本权衡,可以在曲线上选择合适的操作点或阈值。
召回率曲线通常与精确率曲线(Precision Curve)一起使用,以提供更全面的分类器性能分析,并帮助评估和比较不同模型的性能。

【mAP0.5】
mAP0.5,也被称为mAP@0.5或AP50,指的是当Intersection over Union(IoU)阈值为0.5时的平均精度(mean Average Precision)。IoU是一个用于衡量预测边界框与真实边界框之间重叠程度的指标,其值范围在0到1之间。当IoU值为0.5时,意味着预测框与真实框至少有50%的重叠部分。
在计算mAP0.5时,首先会为每个类别计算所有图片的AP(Average Precision),然后将所有类别的AP值求平均,得到mAP0.5。AP是Precision-Recall Curve曲线下面的面积,这个面积越大,说明AP的值越大,类别的检测精度就越高。
mAP0.5主要关注模型在IoU阈值为0.5时的性能,当mAP0.5的值很高时,说明算法能够准确检测到物体的位置,并且将其与真实标注框的IoU值超过了阈值0.5。

【mAP0.5:0.95】
mAP0.5:0.95,也被称为mAP@[0.5:0.95]或AP@[0.5:0.95],表示在IoU阈值从0.5到0.95变化时,取各个阈值对应的mAP的平均值。具体来说,它会在IoU阈值从0.5开始,以0.05为步长,逐步增加到0.95,并在每个阈值下计算mAP,然后将这些mAP值求平均。
这个指标考虑了多个IoU阈值下的平均精度,从而更全面、更准确地评估模型性能。当mAP0.5:0.95的值很高时,说明算法在不同阈值下的检测结果均非常准确,覆盖面广,可以适应不同的场景和应用需求。
对于一些需求比较高的场合,比如安全监控等领域,需要保证高的准确率和召回率,这时mAP0.5:0.95可能更适合作为模型的评价标准。
综上所述,mAP0.5和mAP0.5:0.95都是用于评估目标检测模型性能的重要指标,但它们的关注点有所不同。mAP0.5主要关注模型在IoU阈值为0.5时的性能,而mAP0.5:0.95则考虑了多个IoU阈值下的平均精度,从而更全面、更准确地评估模型性能。

【loss曲线】
在深度学习的训练过程中,loss函数用于衡量模型预测结果与实际标签之间的差异。loss曲线则是通过记录每个epoch(或者迭代步数)的loss值,并将其以图形化的方式展现出来,以便我们更好地理解和分析模型的训练过程。

【F1值曲线】
F1值曲线是一种用于评估二分类模型在不同阈值下的性能的可视化工具。它通过绘制不同阈值下的精确率(Precision)、召回率(Recall)和F1分数的关系图来帮助我们理解模型的整体性能。
F1分数是精确率和召回率的调和平均值,它综合考虑了两者的性能指标。F1值曲线可以帮助我们确定在不同精确率和召回率之间找到一个平衡点,以选择最佳的阈值。
绘制F1值曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的精确率、召回率和F1分数。
将每个阈值下的精确率、召回率和F1分数绘制在同一个图表上,形成F1值曲线。
根据F1值曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
F1值曲线通常与接收者操作特征曲线(ROC曲线)一起使用,以帮助评估和比较不同模型的性能。它们提供了更全面的分类器性能分析,可以根据具体应用场景来选择合适的模型和阈值设置。

综合实验对比来看:五款不同参数量级的模型最终没有拉开非常明显的间隔,达到了较为相近的效果,综合考虑最终选择使用s系列的模型作为最终的线上推理模型。

接下来看下s系列模型的结果详情。

【离线推理实例】

【Batch实例】

【混淆矩阵】

【F1值曲线】

【Precision曲线】

【PR曲线】

【Recall曲线】

【训练可视化】

感兴趣的话也都可以自行动手尝试下!本文仅作为抛砖引玉,从实验的角度进行基础的实践开发尝试,距离真正落地应用还有很长的路要走,不过科技发展的趋势就应该是赋能作业生产,提质增效的同时降低安全隐患。随着无人机续航突破90分钟、5G网络全域覆盖、数字孪生城市建模精度达到厘米级,道路巡检正在向立体化、智能化方向演进。可以预见三个发展趋势:

巡检网络智能化:无人机自动机场与车路协同系统融合,实现"发现即响应"的闭环管理
多源数据融合:整合气象卫星、地质监测、交通流量等多维度数据,构建道路健康度指数
服务场景延伸:从病害检测向交通优化扩展,动态调整限速、车流引导等参数,提升道路通行效率
这种技术演进正在重塑道路养护产业生态。传统养护企业正从"人力密集型"向"技术密集型"转型,无人机运营商、算法提供商、数据服务商等新角色不断涌现,催生出百亿级的新型服务市场。道路养护的智慧化转型,本质是交通基础设施数字化升级的微观缩影。当无人机在百米高空织就的"天网"与地下管廊的"地网"交融,当AI算法在云端构建的"数字道路"与物理世界实时互动,我们正在见证的,不仅是养护模式的革新,更是未来交通体系的雏形。在这场静悄悄的交通革命中,每一公里道路都在成为会思考、能呼吸的智慧生命体。

<think>好的,我现在需要详细分析用户关于YOLOv8模型中不同版本(n, s, m, l, x)的区别和特点的问题。首先,我需要确认用户的问题是什么,他们想知道各个模型之间的差异,可能包括参数量、计算量、速度、准确度等方面的对比。 用户之前问过关于YOLOv8中的NMS的问题,现在转向模型的不同变体,说明他们可能在使用YOLOv8进行目标检测时,需要根据具体需求选择合适的模型。因此,我需要全面比较各个模型参数,并解释如何根据场景选择适合的版本。 首先,我需要回忆YOLOv8的官方文档或相关资料,了解各个模型的命名规则。通常,YOLO系列的模型后缀代表不同的尺寸,比如nano(n)、small(s)、medium(m)、large(l)、extra large(x),这些后缀对应不同的网络深度和宽度,从而影响模型的大小和性能。 接下来,我需要整理每个模型的具体参数,例如参数量(parameters)、计算量(FLOPs)、输入分辨率、推理速度(比如用CPU或GPU的时间)、以及在不同数据集上的准确度指标(如mAP)。这些数据通常可以在官方文档或相关论文中找到,但需要注意不同来源的数据可能有差异,需要确保准确性。 然后,我需要考虑用户可能的实际应用场景。例如,移动端或嵌入式设备可能需要轻量级的模型(如n或s),而服务器端或需要高精度的场景可能需要更大的模型(如l或x)。因此,在解释各个模型特点时,需要结合应用场景,给出选择建议。 另外,用户可能对模型的结构差异感兴趣,比如网络深度、宽度、使用的卷积类型等。但YOLOv8的具体架构细节可能较为复杂,是否需要深入解释?考虑到用户可能更关注应用层面的差异,可以简要提及结构差异,但重点放在性能参数上。 还需要注意,YOLOv8可能支持不同的任务,如分类、检测、分割,不同模型变体在这些任务上的表现是否一致?可能需要说明,但用户的问题集中在目标检测上,所以可以专注于检测任务的比较。 同时,我需要确保使用的中文术语准确,比如“参数量”、“计算量”、“推理速度”等,并且按照之前的系统级指令,正确使用LaTeX格式标注数学表达式,比如FLOPs用$单位,参数用百万(M)或十亿(B)表示。例如,参数可以写成$1.9M$,FLOPs写成$4.5B$等。 此外,要检查是否所有行内数学表达式都用$...$格式,独立公式用$$...$$,并且结构清晰,分点列出。例如,用表格或分项列表对比各个模型参数,这样用户更容易理解。 最后,总结部分需要明确各个模型的适用场景,帮助用户根据需求做出选择。可能还需要提到如何通过官方代码调整模型,比如加载不同版本的命令,如model = YOLO('yolov8n.pt')等,增强实用性。 现在需要验证一下各个模型的具体参数是否正确。例如,YOLOv8n的参数量是否在1.9M左右,YOLOv8x是否超过60M?这些数据可能需要查阅最新的官方资料,避免引用过时的信息。另外,不同输入分辨率(如640x640)对FLOPs的影响,是否每个模型都使用相同的输入尺寸,还是根据模型不同有变化?需要确认这一点,因为输入尺寸会影响计算量。 还要注意,推理速度会受到硬件的影响,比如在COCO数据集上的mAP值是否在官方文档中有明确的数据,确保引用的准确性。如果有不确定的地方,可能需要标注数据来源或说明可能存在的变化。 总结思考步骤:确认用户需求,收集各个模型的具体参数,对比参数量、计算量、速度和准确度,解释结构差异,给出选择建议,确保数据准确,格式正确,语言清晰。</think>以下是YOLOv8不同模型变体(n/s/m/l/x)的详细对比和特点总结,按参数、性能和适用场景分类说明: --- ### 一、核心差异概览 YOLOv8模型后缀(n/s/m/l/x)代表**网络深度和宽度的逐级增加**,直接影响模型参数量、计算量、推理速度和检测精度。以下为各版本的关键指标对比(基于**640x640输入分辨率**和COCO数据集): | 模型 | 参数量 | FLOPs | 推理速度(V100 GPU) | mAP (val) | 适用场景 | |-------|----------|----------|----------------------|-----------|------------------------| | **n** (nano) | $3.2M$ | $8.7B$ | **0.5ms** | 37.3 | 移动端、实时检测 | | **s** (small)| $11.2M$ | $36.4B$ | 0.8ms | 44.9 | 边缘计算、平衡速度与精度| | **m** (medium)| $26.2M$ | $82.2B$ | 1.3ms | 50.2 | 通用服务器端 | | **l** (large)| $43.7M$ | **165.4B** | 2.0ms | 52.9 | 高精度需求 | | **x** (xlarge)| **68.9M**| 257.8B | **3.1ms** | **53.9** | 计算资源充足的复杂场景 | --- ### 二、详细特点解析 #### 1. **YOLOv8n(Nano)** - **结构**:最浅的网络层,通道数最少。 - **优势**:极低的延迟($<1ms$),适合嵌入式设备(如Jetson Nano)或手机端部署。 - **典型应用**:实时视频分析、无人机检测。 #### 2. **YOLOv8s(Small)** - **改进**:相比nano,深度和宽度增加约30%,参数量提升至$11.2M$。 - **平衡点**:速度与精度均衡,FLOPs控制在$36.4B$,适合边缘GPU(如NVIDIA T4)。 - **适用场景**:安防监控、工业质检。 #### 3. **YOLOv8m(Medium)** - **性能跃升**:mAP突破50%,参数量达$26.2M$,适合服务器级GPU。 - **计算成本**:FLOPs增至$82.2B$,需权衡实时性要求。 - **用途**:自动驾驶感知、医学影像分析。 #### 4. **YOLOv8l(Large)** - **精度优势**:mAP接近53%,参数量$43.7M$,适合高分辨率输入(如卫星图像)。 - **资源消耗**:显存占用较高(约4GB以上),需RTX 3090/A100等硬件支持。 #### 5. **YOLOv8x(XLarge)** - **极限性能**:参数量最大($68.9M$),mAP达**53.9**,但推理速度降至3ms。 - **应用场景**:大规模图像数据库分析、学术研究中的SOTA对比。 --- ### 三、选择建议 - **速度优先**:选 **YOLOv8n**(如无人机避障)或 **YOLOv8s**(如零售货架检测)。 - **精度优先**:选 **YOLOv8l/x**(如病理细胞检测、遥感图像解译)。 - **平衡需求**:**YOLOv8m** 是通用服务器场景的“甜点”模型。 --- ### 四、扩展配置 - **输入分辨率调整**:可通过修改输入尺寸进一步优化速度或精度。例如: $$ \text{推理代码:} \quad \text{model.predict(source=..., imgsz=320)} $$ - **模型加载方式**:直接通过Ultralytics API指定版本: ```python from ultralytics import YOLO model = YOLO('yolov8s.pt') # 加载small版本 ``` --- ### 五、关键结论 | 维度 | n → x 变化趋势 | |------------|-------------------------------| | 参数量 | 指数级增长(3.2M → 68.9M) | | 推理速度 | 线性下降(0.5ms → 3.1ms) | | 检测精度 | 边际收益递减(mAP +16.6) | | 硬件需求 | 从嵌入式GPU到多卡服务器 | 根据实际资源与任务需求,灵活选择模型变体即可最大化性价比。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Together_CZ

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值