在sgd的实现代码中,使用到了with torch.no_grad():
def sgd(params, lr, batch_size): #@save
"""小批量随机梯度下降"""
with torch.no_grad():
for param in params:
param -= lr * param.grad / batch_size
print(f'参数:{param} 梯度:{param.grad}')
param.grad.zero_()
for epoch in range(num_epochs):
for X, y in data_iter(batch_size, features, labels):
l = loss(net(X, w, b), y) # X和y的小批量损失
print(f'loss:{l}')
# 因为l形状是(batch_size,1),而不是一个标量。l中的所有元素被加到一起,
# 并以此计算关于[w,b]的梯度
l.sum().backward() # 标量输出或者tensor输出才能反向求导
sgd([w, b], lr, batch_size) # 使用参数的梯度更新参数
with torch.no_grad():
train_l = loss(net(features, w, b), labels)
print(f'epoch {epoch + 1}, loss {float(train_l.mean()):f}')
输出为:
参数:tensor([[ 2.0000],
[-3.3996]], requires_grad=True) 梯度:tensor([[0.0078],
[0.0383]])
参数:tensor([4.1998], requires_grad=True) 梯度:tensor([0.0261])
如果不使用with torch.no_grad():
def sgd(params, lr, batch_size): #@save
"""小批量随机梯度下降"""
for param in params:
param -= lr * param.grad / batch_size
print(f'参数:{param} 梯度:{param.grad}')
param.grad.zero_()
输出为:
RuntimeError: a leaf Variable that requires grad is being used in an in-place operation.
原因是计算图中的叶子节点不能直接进行内置运算,防止影响计算图的反向传播运算,因此会报错。那如果这样写:
def sgd(params, lr, batch_size): #@save
"""小批量随机梯度下降"""
for param in params:
param = param - lr * param.grad / batch_size
print(f'参数:{param} 梯度:{param.grad}')
param.grad.zero_()
输出为:
参数:tensor([[ 2.0005],
[-3.3998]], grad_fn=<SubBackward0>) 梯度:None
AttributeError: 'NoneType' object has no attribute 'zero_'
这样做也是不行的,相当于新建了一个叫param的变量,它的grad会是none。在torch.no_grad的作用下这个变量的requires_grad会等于false。原来的param已经丢失了。
因此with torch.no_grad()与in place操作结合使用,可以对叶结点实现更新等原地操作,在这样使用时需要注意用param.grad.zero_()清除梯度。