【动手深度学习v2】with torch.no_grad()用法

在sgd的实现代码中,使用到了with torch.no_grad():

def sgd(params, lr, batch_size):  #@save
    """小批量随机梯度下降"""
    with torch.no_grad():  
        for param in params:
            param -= lr * param.grad / batch_size
            print(f'参数:{param} 梯度:{param.grad}')
            param.grad.zero_()
       
for epoch in range(num_epochs):
    for X, y in data_iter(batch_size, features, labels):
        l = loss(net(X, w, b), y)  # X和y的小批量损失
        print(f'loss:{l}')
        # 因为l形状是(batch_size,1),而不是一个标量。l中的所有元素被加到一起,
        # 并以此计算关于[w,b]的梯度
        l.sum().backward()  # 标量输出或者tensor输出才能反向求导
        sgd([w, b], lr, batch_size)  # 使用参数的梯度更新参数
    with torch.no_grad():
        train_l = loss(net(features, w, b), labels)
        print(f'epoch {epoch + 1}, loss {float(train_l.mean()):f}')

输出为:

参数:tensor([[ 2.0000],
        [-3.3996]], requires_grad=True) 梯度:tensor([[0.0078],
        [0.0383]])
参数:tensor([4.1998], requires_grad=True) 梯度:tensor([0.0261])

如果不使用with torch.no_grad():

def sgd(params, lr, batch_size):  #@save
    """小批量随机梯度下降"""
    for param in params:
        param -= lr * param.grad / batch_size
        print(f'参数:{param} 梯度:{param.grad}')
        param.grad.zero_()

输出为:

RuntimeError: a leaf Variable that requires grad is being used in an in-place operation.

原因是计算图中的叶子节点不能直接进行内置运算,防止影响计算图的反向传播运算,因此会报错。那如果这样写:

def sgd(params, lr, batch_size):  #@save
    """小批量随机梯度下降"""
    for param in params:
        param = param - lr * param.grad / batch_size
        print(f'参数:{param} 梯度:{param.grad}')
        param.grad.zero_()

输出为:

参数:tensor([[ 2.0005],
        [-3.3998]], grad_fn=<SubBackward0>) 梯度:None
AttributeError: 'NoneType' object has no attribute 'zero_'

这样做也是不行的,相当于新建了一个叫param的变量,它的grad会是none。在torch.no_grad的作用下这个变量的requires_grad会等于false。原来的param已经丢失了。
因此with torch.no_grad()与in place操作结合使用,可以对叶结点实现更新等原地操作,在这样使用时需要注意用param.grad.zero_()清除梯度。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值