- 博客(15)
- 收藏
- 关注
原创 论文阅读:Development of a Navigation Solution for an Image Aided Automatic Landing System
因此,必须单独评估所需的导航准确性水平,特别是对于无人机自主着陆操纵的情况。最常见的是(1)(2),这也是PL-VIO等等使用的版本。最后是公式(4),式子里的R和c甚至连w2c和c2w都不对应。其实文章公式10的c不是world2cam,虽然它声称如此,但实际上,想要推出它的结果,也就是公式。推了我3天才推明白。也就是说作者悄悄偷换了个符号!这几天天天看射影几何和Plucker坐标,终于看懂这里的公式推导了。但是又没有给详细的推导过程,我拿他的公式算又算不对。现在看懂了,旋转不用估计,是由IMU输出的。
2024-05-11 11:05:24 635 1
原创 论文阅读:Benefits and Challenges of Optical Positioning during Landing Approach
飞行的最后阶段是最短但是关键的阶段。final approach 和landing 的事故率分别高达24%, 24%。目前的导航增强系统主要是ILS,但是许多小机场没有。代替的办法有GBAS和MLS(microwave landing system),这同样需要地面设施且不普及。GPS的导航性能只支持到决断高度,WASS规定,系统的完好性和精度知道最小高度200ft(CAT-I)。
2024-05-11 11:05:11 306
原创 论文阅读:Image-Aided Position Estimation Based on Line Correspondences during Automatic Landing Approach
IBVS Image Based Visual Servoing和PBVS Pose Based Visual Servping有所不同。前者直接从图像信息计算控制的指令,但是要求图像处理和控制系统强耦合。后者先构建自身和物体的位姿,再进行控制指令的计算。本文属于后者。文章接着列举了许多基于点,线的位姿估计论文。由于年代太过古早就不细看了。
2024-05-11 11:04:57 1679
原创 论文阅读:High Precision Approaches Enabled by an Optical-Based Navigation System
还是老样子,Canny 边缘提取 + Hough 线段检测。这一篇文章内容不是很多,主要在讲特征提取,也就是跑道线检测。
2024-05-11 11:04:51 399
原创 论文阅读:Model-based Threshold and Centerline Detection forAircraft Positioning during Landing Approach
引言不看了。第一部分又把相机模型,直线表达,投影模型介绍了一遍,前面几篇已经讲的很清楚了。第二部分是跑道线检测,这个之前也总结很多次了。
2024-05-11 11:04:42 232
原创 论文阅读汇总:机场跑道线检测方案(传统方法)
2017引言总结了2大思路,基于特征和基于模版,基于特征的方法有线特征比如Hough,LSD,Heuristic等等,点特征还有SIFT+HDR tree,纹理特征等等。还有基于模版的特征,和预先拍的照片比较,但是时间太长。这篇论文融合了机场跑道先验信息,飞机自身传感器信息,来进行LSD线特征提取。其实就是根据飞机的位置和姿态和跑道的先验坐标信息,通过相机模型,把跑道投影到图像上,得到一个跑道的感兴趣区域(ROI)。然后在ROI里用EDLSD线特征检测。
2024-05-05 02:06:30 505
原创 Plucker坐标与Plucker矩阵
Plucker坐标与Plucker矩阵几何定义假设x,y\mathbf{x}, \mathbf{y}x,y是直线上的点,直线的Plucker坐标表示为L:=(l,m)\mathbf{L}:=(\mathbf{l},\mathbf{m})L:=(l,m),其中l=y−x\mathbf{l}=\mathbf{y}-\mathbf{x}l=y−xm=x×y\mathbf{m}=\mathbf{x}\times\mathbf{y}m=x×y∥m∥∣∣l∣∣\frac{\|\mathbf{m}\|}{||
2024-05-05 01:31:32 1872
原创 endnote 设置对机构名称不进行缩写的方法
在endnote中,有时候(例如APA)输出参考文献时,会将机构名称进行缩写,例如European Patent Office 缩写为 E. P. Office。这是由于endnote无法区分机构和人名。只需在机构后加英文逗号就可以输出全称了。
2024-04-28 02:55:55 568 1
原创 pytorch中tensor的cpu和gpu转换
注意tensor的to()和cuda()都不是原位操作,这意味着一定要把返回值赋给原张量。或者X = X.cuda()
2023-09-03 10:21:09 885 2
原创 with torch.no_grad() 和 叶子节点in place操作
例如下面的代码由于y依赖于w求梯度,如果改变了w,那么反向传播求梯度的时候y的梯度是错误的,所以pytorch设置为不能改变。另一种情况是requires_grad为true非叶子节点,在求梯度时需要被用到,也不可以进行in place操作。但这里如果修改的是f也不会报错,只有中间节点不能修改。参考https://zhuanlan.zhihu.com/p/38475183。
2023-09-02 11:54:12 199
原创 pytorch中require grad, 叶子节点, grad 与 grad_fn
c有grad但是a没有grad,因为反向传播的时候a没有正向传播函数grad_fn。当然实际没人会这么写代码。可以让非叶子节点保留梯度。
2023-09-01 14:48:00 172 1
原创 构建yolov8+ros镜像实现实时目标检测
值得一提的是由于最后一层镜像,安装ros时需要输入地区和键盘信息(非常无聊的设置),但是镜像构建是不能交互的,也就是说,没办法输入任何信息给构建中的镜像,从而构建会卡死在输入地区这一步。解决方法是构建到最后一步时,创建一个临时镜像,用这个镜像建一个容器,在容器里安装ros,最后commit成最终镜像。启动编译好的yolov8_ros功能包,地址为https://github.com/qq44642754a/Yolov8_ros,即可看到实时监测了。注意,不同的主机和相机使用的设备名不同,可以在主机里查看。
2023-08-24 00:47:23 760 1
原创 nvidia docker, nvidia docker2, nvidia container toolkits三者的区别
这篇博客的起因是在docker容器中引入GPU资源时,查阅了网上许多教程,教程之间概念模糊不清,相互矛盾,过时的教程和新的教程混杂在一起。主要原因是nvidia为docker容器的支持发生了好几代变更,api发生了不少变化。下面来总结一下各代支持发展历程。
2023-08-15 23:40:02 3813 7
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人