《动手深度学习》3.1线性回归&3.2pytorch实现

线性回归的基本元素

  • 线性模型
  • 损失函数
  • 解析解_一般只有凸优化问题存在解析解
  • 基础优化方法-梯度下降
    梯度下降原理:不断地沿着损失函数递减的方向(函数在负梯度方向下降最快)上来更新参数。
    学习率在这里插入图片描述
  • 小批量随机梯度下降
    批量大小:在这里插入图片描述
  • 线性回归应用—预测

pytorch从零实现(不使用现成框架)

%matplotlib inline ##这是魔法函数的定义,表示可以在Ipython编译器里直接使用,功能是可以内嵌绘图,并且可以省略掉plt.show()这一步。
import random
import torch
import matplotlib # 注意这个也要import一次
import matplotlib.pyplot as plt
生成数据集

目的:对原函数y=[2,-3.4]*X+4.2进行拟合,但是没有数据集啊。所以,以下代码用一个满足均值为0方差为0.01的正态分布随机误差项生成了一批训练数据!
在这里插入图片描述

def synthetic_data(w, b, num_examples):  #@save
    """生成y=Xw+b+噪声"""
    X = torch.normal(0, 1, (num_examples, len(w)))
    y = torch.matmul(X, w) + b
    y += torch.normal(0, 0.01, y.shape)
    return X, y.reshape((-1, 1))
    #这里-1是指未设定行数,程序随机分配,所以这里-1表示任一正整数;即reshape(-1,1)表示(任意行,1列)

true_w = torch.tensor([2, -3.4])
true_b = 4.2
features, labels = synthetic_data(true_w, true_b, 1000)
  • 注意: X是1000x2;y.reshape(-1,1)中-1表示不指定行,意思就是reshape成(任意行,1列)的形状
  • features中的每一行都包含一个二维数据样本, labels中的每一行都包含一维标签值(一个标量)。
  • 可视化一下这2个特征features[:, 0],features[:,1]和labels的散点图, 可以直观观察到两者之间的线性关系。显然一个是正比,一个是反比。
plt.figure(1)
plt.scatter(features[:,0].detach().numpy(), labels.detach().numpy());
plt.figure(2)
plt.scatter(features[:,1].detach().numpy(), labels.detach().numpy());

在这里插入图片描述在这里插入图片描述

读取数据集(小批量!minibatch)
  • 定义一个函数, 该函数能打乱数据集中的样本并以小批量方式获取数据。
  • 定义data_iter函数: 该函数接收批量大小、特征矩阵和标签向量作为输入,生成大小为batch_size的小批量。 每个小批量包含一组特征和标签。
def data_iter(batch_size, features, labels):
    num_examples = len(features)
    indices = list(range(num_examples))#随机生成样本索引
    random.shuffle(indices) #打乱顺序
    for i in range(0, num_examples, batch_size):
        batch_indices = torch.tensor(indices[i: min(i+ batch_size, num_examples)])
        yield features[batch_indices], labels[batch_indices]

调用函数,一共可以得到num_examples/batch_size组批量,每一组包含batch_size个样本!
输出来获得的前5组batch看一下下~

batch_size = 10
i = 0
for X, y in data_iter(batch_size, features, labels):
    print(X, '\n', y)
    i += 1
    if(i>5): break

在这里插入图片描述

利用GPU并行运算的优势,处理合理大小的“小批量”。 每个样本都可以并行地进行模型计算,且每个样本损失函数的梯度也可以被并行计算。 高效!!

当函数迭代时,我们会连续地获得不同的小批量,直至遍历完整个数据集。 上面实现的迭代对于教学来说很好,但它的执行效率很低,可能会在实际问题上陷入麻烦。 例如,它要求我们将所有数据加载到内存中,并执行大量的随机内存访问。 在深度学习框架中实现的内置迭代器效率要高得多, 它可以处理存储在文件中的数据和数据流提供的数据。

初始化模型参数
  • 用小批量随机梯度下降优化模型参数之前, 需要先有一些参数(随机预设)。so…通过正态分布中采样随机数来初始化权重, 并将偏置b初始化为0
w = torch.normal(0, 0.01, size=(2,1), requires_grad=True)
b = torch.zeros(1, requires_grad=True)
  • 接下来!开始更新这些参数,直到这些参数足够拟合我们的数据。 并使用pytorch的自动求导来计算每次更新需要的梯度值!
定义"线性回归"模型
def linreg(X, w, b):  #@save
    """线性回归模型"""
    return torch.matmul(X, w) + b
定义损失函数-均方误差
def squared_loss(y_hat, y):  #@save
    """均方损失"""
    return (y_hat - y.reshape(y_hat.shape)) ** 2 / 2
  • 也就是我们的前馈(forward)计算过程,即运行模型时会构建一个计算图!
定义优化算法-minibatch梯度下降
  1. 每一步中,从数据集中随机抽取一个小批量,然后根据参数计算损失的梯度
  2. 接下来,朝着减少损失的方向更新参数。
  3. 以下函数输入参数为:模型参数集合、学习率和批量大小。学习速率lr决定每一步更新的大小。
  4. 因为我们计算的损失是一个批量样本的总和(而不是均值),为避免batch_size影响到loss值的大小,我们给它求个均值(除以batch_size)来规范化一下。
    在这里插入图片描述
def sgd(params, lr, batch_size):  #@save
    """小批量随机梯度下降"""
    with torch.no_grad():
        for param in params:
            param -= lr * param.grad / batch_size
            param.grad.zero_()#更新完将梯度清零!
训练
  1. 在for的每次循环中,我们每次读取一个batch的训练样本,通过模型来获得一组预测。
  2. 计算损失(前馈过程forward,构建计算图)
  3. 然后,开始反向传播,存储每个参数的梯度。 (因为loss的shape是(batch_size,1),不是一个标量,所以考虑求sum将l中的所有元素加到一起,再以此计算关于[w,b]的梯度)
  4. 最后,我们调用优化算法sgd来更新模型参数。
    在这里插入图片描述
lr = 0.03
num_epochs = 3
net = linreg
loss = squared_loss

for epoch in range(num_epochs):
    for X, y in data_iter(batch_size, features, labels):
        l = loss(net(X, w, b), y)  # X和y的小批量损失
        # 因为l形状是(batch_size,1),而不是一个标量。l中的所有元素被加到一起,
        # 并以此计算关于[w,b]的梯度
        l.sum().backward()
        sgd([w, b], lr, batch_size)  # 使用参数的梯度更新参数
    with torch.no_grad(): #以下计算过程不自动计算导数
        train_l = loss(net(features, w, b), labels)
        print(f'epoch {epoch + 1}, loss {float(train_l.mean()):f}')

在这里插入图片描述

误差验证:看一下用这些数据拟合计算的w,b和原本真实的true_w,true_b差了多少吧
print(f'w的估计误差: {true_w - w.reshape(true_w.shape)}')
print(f'b的估计误差: {true_b - b}')

在这里插入图片描述

——————————————————————————————

python语法基础补充

reshape(-1,1)
  • reshape(-1,1)中-1表示不指定行,意思就是reshape成(任意行,1列)的形状
random.shuffle()
  • 函数用法: random.shuffle()用于将一个列表中的元素打乱顺序,值得注意的是使用这个方法不会生成新的列表,只是将原列表的次序打乱。
with torch.no_grad()
首先看with
  • 在pytorch写的网络中,with torch.no_grad():非常常见。
  • 关于python中的with:
    with 语句适用于对资源进行访问的场合,确保不管使用过程中是否发生异常都会执行必要的清理操作释放资源,比如文件使用后自动关闭/线程中锁的自动获取和释放等。
  • with工作原理:
    (1)紧跟with后面的语句被求值后,返回对象的“–enter–()”方法被调用,这个方法的返回值将被赋值给as后面的变量;
    (2)当with后面的代码块全部被执行完之后,将调用前面返回对象的“–exit–()”方法。
    在这里插入图片描述
with torch.no_grad的作用
  • 在该模块下,所有计算得出的tensor的requires_grad都自动设置为False
  • 即使一个tensor(记为x)的requires_grad = True,在with
    torch.no_grad下计算时,由x计算得到的其他tensor(比如记为z)的requires_grad也为False,不会对z求导。
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值