[机器学习] 高斯过程 Gaussian-Process、CLT、高斯分布

本文介绍了机器学习中的高斯过程(Gaussian Process)、中心极限定理(CLT)以及高斯分布。讨论了参数方法和非参数方法,重点讲述了高斯过程回归(GPR)的定义、后验概率分布和核函数选择。此外,还探讨了高斯分布的一元和多元形式,以及其性质。
摘要由CSDN通过智能技术生成

代码参考:https://blog.csdn.net/weixin_39517202/article/details/111338017

视频参考:https://www.cs.cornell.edu/courses/cs4780/2018fa/lectures/lecturenote15.html

参考:https://thegradient.pub/gaussian-process-not-quite-for-dummies/

参考:工作台 - Heywhale.com

参考:多元高斯分布完全解析 - 知乎

参考:https ://blog.csdn.net/qq_40644291/article/details/106160648

关于核函数,见另一篇博客(还没写)。

目录

一、引言

1. 参数方法

2. 非参数方法

二、CLT中心极限定理

 三、高斯分布

1. 一元高斯分布

2. 多元高斯分布(维度为d)

3. 性质 

四、高斯过程回归

1. 高斯过程-定义

 2. 后验概率分布

3. 高斯过程回归(GPR) 


一、引言

1. 参数方法<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

心心喵

喵喵(*^▽^*)

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值