透彻理解高斯过程Gaussian Process (GP)
一、整体说说
为了理解高斯过程,我们就首先需要了解如下预备知识,即:高斯分布(函数)、随机过程、以及贝叶斯概率等。明白了这些预备知识之后才能顺利进入高斯过程,了解高斯过程本质及其高斯过程描述方法。人们又将高斯过程与贝叶斯概率有机结合在一起,构造了强大的数学方法(或称模型),为人类提供解决日常生活和工作的问题。特别是在人工智能领域更是意义非凡。为什么呢?
- 高斯过程模型属于无参数模型,相对解决的问题复杂度及与其它算法比较减少了算法计算量。
- 高斯模型可以解决高维空间(实际上是无限维)的数学问题,可以面对负杂的数学问题。
- 结合贝叶斯概率算法,可以实现通过先验概率,推导未知后验输入变量的后验概率。由果推因的概率。
- 高斯过程观测变量空间是连续域,时间或空间。
- 高斯过程观测变量空间是实数域的时候,我们就可以进行回归而实现预测。
- 高斯过程观测变量空间是整数域的时候(观测点是离散的),我们就可以进行分类。结合贝叶斯算法甚至可以实现单类分类学习(训练),面对小样本就可以实现半监督学习而后完成分类。面对异常检测领域很有用,降低打标签成本(小样本且单类即可训练模型)。
所以说,我们快点进入高斯过程-贝叶斯概率算法模型吧,功能非凡。
接下来慢慢展开学习之旅吧。
二、高斯分布(高斯函数)
https://blog.csdn.net/jorg_zhao/article/details/52687448
https://blog.csdn.net/zyttae/article/details/41086773
(一)一维高斯函数
一维高斯函数定义 一 维 高 斯 函 数 定 义
若随机变量 X X 服从一个位置参数为 、尺度参数为 σ σ 的概率分布(正态分布),记为:X∼N(μ,σ2). X ∼ N ( μ , σ 2 ) .则其概率密度函数为f(x)=1σ2π−−√e−(x−μ)22σ2 f ( x ) = 1 σ 2 π e − ( x − μ ) 2 2 σ 2正态分布的数学期望值(或期望值) μ μ 等于位置参数,决定了分布曲线的位置;其方差 σ2 σ 2 的开平方或标准差 σ σ 等于尺度参数,决定了分布曲线的幅度。正态分布的概率密度函数曲线呈钟形,因此人们又经常称之为钟形曲线 “bellcurve” “ b e l l c u r v e ” 。
我们通常所说的标准正态分布是位置参数 μ=0 μ = 0 ,尺度参数 σ=1 σ = 1 的正态分布(见下图中红色曲线)。
对于任意的实数 a,b,c a , b , c ,
a=1σ2π√是曲线尖峰的高度,b=μ是尖峰中心的坐标,c=σ称为标准方差,表征的是bell钟状的宽度。钟形曲线下的总面积和永远为1 a = 1 σ 2 π 是 曲 线 尖 峰 的 高 度 , b = μ 是 尖 峰 中 心 的 坐 标 , c = σ 称 为 标 准 方 差 , 表 征 的 是 b e l l 钟 状 的 宽 度 。 钟 形 曲 线 下 的 总 面 积 和 永 远 为 1 。
- 为什么用概率密度函数表示高斯正态分布的函数:这种方法能够表示随机变量每个取值有多大的可能性。其它方法我们这里不在描述了,如:累积分布函数,cumulant、特征函数、动差生成函数以及cumulant-生成函数。
- 正态分布中一些值得注意的现象(量):
- 密度函数关于平均值 μ μ 对称。
- 平均值与它的众数(statistical mode)以及中位数(median)同一数值。
- 函数曲线下68.268949%的面积在平均数左右的一个标准差范围内。
- 95.449974%的面积在平均数左右两个标准差2 \sigma的范围内。
- 99.730020%的面积在平均数左右三个标准差3 \sigma的范围内。
- 99.993666%的面积在平均数左右四个标准差4 \sigma的范围内。
-
其中:
μ=1m∑mi=1x(i)σ2=1m∑mi=1(x(i)−μ)2) μ = 1 m ∑ i = 1 m x ( i ) σ 2 = 1 m ∑ i = 1 m ( x ( i ) − μ ) 2 )
-
在机器学习中,用于故障检测时,训练数据集
X X
是已知,而且不需要有标签,可以作为非监督学习训练。
高斯分布样例如下图(引自吴恩达课件):
注:机器学习中对于方差我们通常只除以 而非统计学中的 m−1 m − 1 (因为均值进去一个点)。这里顺便提一下,在实际使用中,到底是选择使用 1m 1 m 还是 1m−1 1 m − 1 其实区别很小,只要你有一个还算大的训练集,在机器学习领域大部分人更习惯使用这个版本的公式。这两个版本的公式在理论特性和数学特性上稍有不同,但是在实际使用中,他们的区别甚小,几乎可以忽略不计。
在异常检测中,利用如下策略判断异常