透彻理解高斯过程Gaussian Process (GP)

透彻理解高斯过程Gaussian Process (GP)

一、整体说说

为了理解高斯过程,我们就首先需要了解如下预备知识,即:高斯分布(函数)、随机过程、以及贝叶斯概率等。明白了这些预备知识之后才能顺利进入高斯过程,了解高斯过程本质及其高斯过程描述方法。人们又将高斯过程与贝叶斯概率有机结合在一起,构造了强大的数学方法(或称模型),为人类提供解决日常生活和工作的问题。特别是在人工智能领域更是意义非凡。为什么呢?

  1. 高斯过程模型属于无参数模型,相对解决的问题复杂度及与其它算法比较减少了算法计算量。
  2. 高斯模型可以解决高维空间(实际上是无限维)的数学问题,可以面对负杂的数学问题。
  3. 结合贝叶斯概率算法,可以实现通过先验概率,推导未知后验输入变量的后验概率。由果推因的概率。
  4. 高斯过程观测变量空间是连续域,时间或空间。
  5. 高斯过程观测变量空间是实数域的时候,我们就可以进行回归而实现预测。
  6. 高斯过程观测变量空间是整数域的时候(观测点是离散的),我们就可以进行分类。结合贝叶斯算法甚至可以实现单类分类学习(训练),面对小样本就可以实现半监督学习而后完成分类。面对异常检测领域很有用,降低打标签成本(小样本且单类即可训练模型)。
    所以说,我们快点进入高斯过程-贝叶斯概率算法模型吧,功能非凡。
    接下来慢慢展开学习之旅吧。

二、高斯分布(高斯函数)

https://blog.csdn.net/jorg_zhao/article/details/52687448
https://blog.csdn.net/zyttae/article/details/41086773

(一)一维高斯函数

一 维 高 斯 函 数 定 义
若随机变量 X X 服从一个位置参数为 μ 、尺度参数为 σ σ 的概率分布(正态分布),记为:

XN(μ,σ2). X ∼ N ( μ , σ 2 ) .
则其概率密度函数
f(x)=1σ2πe(xμ)22σ2 f ( x ) = 1 σ 2 π e − ( x − μ ) 2 2 σ 2
正态分布的数学期望值(或期望值) μ μ 等于位置参数,决定了分布曲线的位置;其方差 σ2 σ 2 的开平方或标准差 σ σ 等于尺度参数,决定了分布曲线的幅度。正态分布的概率密度函数曲线呈钟形,因此人们又经常称之为钟形曲线 bellcurve “ b e l l c u r v e ”

我们通常所说的标准正态分布是位置参数 μ=0 μ = 0 ,尺度参数 σ=1 σ = 1 的正态分布(见下图中红色曲线)。
这里写图片描述

对于任意的实数 a,b,c a , b , c
a=1σ2π线b=μc=σbell线1 a = 1 σ 2 π 是 曲 线 尖 峰 的 高 度 , b = μ 是 尖 峰 中 心 的 坐 标 , c = σ 称 为 标 准 方 差 , 表 征 的 是 b e l l 钟 状 的 宽 度 。 钟 形 曲 线 下 的 总 面 积 和 永 远 为 1

  • 为什么用概率密度函数表示高斯正态分布的函数:这种方法能够表示随机变量每个取值有多大的可能性。其它方法我们这里不在描述了,如:累积分布函数,cumulant、特征函数、动差生成函数以及cumulant-生成函数。
  • 正态分布中一些值得注意的现象(量):
    1. 密度函数关于平均值 μ μ 对称。
    2. 平均值与它的众数(statistical mode)以及中位数(median)同一数值。
    3. 函数曲线下68.268949%的面积在平均数左右的一个标准差范围内。
    4. 95.449974%的面积在平均数左右两个标准差2 \sigma的范围内。
    5. 99.730020%的面积在平均数左右三个标准差3 \sigma的范围内。
    6. 99.993666%的面积在平均数左右四个标准差4 \sigma的范围内。

这里写图片描述

其中: μ=1mmi=1x(i)σ2=1mmi=1(x(i)μ)2) μ = 1 m ∑ i = 1 m x ( i ) σ 2 = 1 m ∑ i = 1 m ( x ( i ) − μ ) 2 )
在机器学习中,用于故障检测时,训练数据集 X X 是已知,而且不需要有标签,可以作为非监督学习训练。
高斯分布样例如下图(引自吴恩达课件):
一维高斯分布样例图(吴恩达)

注:机器学习中对于方差我们通常只除以 m 而非统计学中的 m1 m − 1 (因为均值进去一个点)。这里顺便提一下,在实际使用中,到底是选择使用 1m 1 m 还是 1m1 1 m − 1 其实区别很小,只要你有一个还算大的训练集,在机器学习领域大部分人更习惯使用这个版本的公式。这两个版本的公式在理论特性和数学特性上稍有不同,但是在实际使用中,他们的区别甚小,几乎可以忽略不计。

在异常检测中,利用如下策略判断异常

ifp(x){ <ε,ε, i f
是的,您说得没错。高斯过程回归(Gaussian Process Regression,GPR)是一种非参数模型,它使用高斯过程Gaussian ProcessGP)作为先验对数据进行回归分析。GPR模型不需要假设数据的分布形式,而是通过对数据进行高斯过程拟合来进行回归预测。具体来说,GPR模型将数据看作是从一个高斯分布中随机采样得到的无限维向量,可以通过对这个向量的均值函数和协方差函数进行建模来对数据进行预测。 GPR模型具有以下特点: 1. 非参数模型:不需要假设数据的分布形式,可以适应各种数据类型和分布形式。 2. 预测精度高:GPR模型可以对数据进行精确的预测,同时可以对预测结果提供可信度估计。 3. 易于解释:GPR模型可以输出均值函数和协方差函数,可以用于解释预测结果和分析数据特征。 在Python中,可以使用Scikit-learn等机器学习库中的GPR模型进行建模,例如: ```python from sklearn.gaussian_process import GaussianProcessRegressor from sklearn.gaussian_process.kernels import RBF # 定义高斯过程内核函数 kernel = RBF(length_scale=1.0) # 定义高斯过程回归模型 model = GaussianProcessRegressor(kernel=kernel, alpha=0.1) # 模型训练和预测 model.fit(X_train, y_train) y_pred, y_std = model.predict(X_test, return_std=True) ``` 需要注意的是,在使用GPR模型进行建模时,需要选择合适的高斯过程内核函数和正则化参数,以获得更好的预测效果。同时,GPR模型也需要进行交叉验证等模型选择和优化操作。
评论 14
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值