[论文笔记] BPR: Bayesian Personalized Ranking from Implicit Feedback 贝叶斯个性化排序

BPR算法适用于大规模商品推荐中的排序问题,通过三元组<u,i,j>引入排序,利用矩阵分解进行优化。不同于传统评分优化,BPR专注于用户个人的商品偏好排序。其优化目标转化为概率排序,需要三元组训练数据。在实际应用中,BPR在推荐少量高优先级商品方面表现出优势,常见于大型电商平台。" 110730577,8517685,倾向性评分匹配:原理与应用,"['统计学', '数据分析']
摘要由CSDN通过智能技术生成

参考:贝叶斯个性化排序(BPR)算法小结 - 刘建平Pinard - 博客园

参考:矩阵分解在协同过滤推荐算法中的应用 - 刘建平Pinard - 博客园

BPR算法使用背景

    在很多推荐场景中,我们都是基于现有的用户和商品之间的一些数据,得到用户对所有商品的评分,选择高分的商品推荐给用户,这是funkSVD之类算法的做法,使用起来也很有效。但是在有些推荐场景中,我们是为了在千万级别的商品中推荐个位数的商品给用户,此时,我们更关心的是用户来说,哪些极少数商品在用户心中有更高的优先级,也就是排序更靠前。也就是说,我们需要一个排序算法,这个算法可以把每个用户对应的所有商品按喜好排序。BPR就是这样的一个我们需要的排序算法。

BPR建模思路

引入排序的三元组

使用了三元组<u,i,j>。 用户 U 在 i 和 j 中点击了 i ,即 i 的优先级大于 j 。

i

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

心心喵

喵喵(*^▽^*)

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值