[论文笔记] 大模型主流Benchmark测试集介绍

本文介绍了多个主流的多语言NLP基准测试集,如ARC、HellaSWAG、MMLU、MTG、PAWS-X、XNLI、X-StoryCloze和XCOPA,涉及推理、选择题、翻译和续写等多种任务,旨在评估模型在不同语言和文化背景下的泛化能力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

         自然语言处理(NLP)的进步往往通过在各种benchmark测试集上的表现来衡量。随着多语言和跨语言NLP研究的兴起,越来越多的多语言测试集被提出以评估模型在不同语言和文化背景下的泛化能力。在这篇文章中,我们将介绍几个主流的多语言NLP benchmark测试集,包括ARC Challenge、HellaSWAG、MMLU、Multi-tasking Test Generation (MTG)、PAWS-X、XNLI、X-StoryCloze和XCOPA等。

        其中XNLI、xcopa是推理题。

        arc、hellaswag、mmlu是选择题。

        MTG、PAWS-X是翻译相关。

        xstorycloze是续写类任务。

AI2 Reasoning Challenge (ARC)(英)

        ARC数据集被设计用来测试和挑战机器对科学问题的理解和推理能力,尤其是针对中学生水平的科学问题。数据集分为两个子集:

  • ARC Easy: 这部分包含那些容易被信息检索系统回答或者被人类学生广泛正确回答的问题。这些问题通常较为简单,需要的推理和背景知识相对较少。

  • ARC Challenge: 这部分包含更难的问题,它们通常不能简单地通过在互联网上查找得到答案,需要更深层的推理和更广泛的背景知识。ARC C

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

心心喵

喵喵(*^▽^*)

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值