列生成(column generation)的应用问题

20 篇文章 3 订阅
4 篇文章 0 订阅

当我们讨论列生成算法,一定要了解一个经典问题——木材下料问题(The cutting stock problem),最初问题的形式为线性规划,相关的问题解析有很多:

优化 | 从集合划分问题到列生成算法

单纯形法和列生成算法解释

线性规划技巧: 列生成(Column Generation)

列生成算法求解矩形下料问题(Matlab代码)

列生成和分支定价

从木材下料问题向外拓展,列生成算法也被用于大规模的线性规划问题,这些问题有以下特征:

  • 大规模意味着变量特别多,很难一次性完全的考虑进来;
  • 只有一小部分变量值是非零的(基变量),大部分变量值为零(非基变量);
  • 只有部分变量可以改善目标函数。

这篇文章主要想把重心放在,当应用列生成算法时会遇到的一些问题及可能的解决方案。

抽象来说,列生成的思路是在子区域(只包含部分列)先生成一个MVP(也就是可行但不是最优的策略),再去寻找可能减少差额成本/非基变量检验数(reduced cost)的列,可行的话就将这个列加入原本的策略中(微调策略)并更新所有列的cost,继续迭代寻找,直到找到最优的策略。

具体来说,在确定要解决的主问题(MP)之后,需要进行几个关键步骤:

  1. 分解问题(Master Problem,MP)为限制主问题(Restricted Master Problem,RMP)与估价问题/子问题(Pricing Problem,PP);
  2. 在每次迭代中,PP通过reduce cost(dual cost)来判断是否有RMP中未涉及到的列(column/independent set)可以改善整个策略。
  3. 如果有则将这个列与cost一同加入当前的RMP,重新计算cost。
  4. 一直迭代到目标函数接近最优。

所以,这个过程中将会涉及到很多个具体问题:

  • 如何拆分原主问题(MP)?
  • 列如何定义?
  • reduce cost如何定义?
  • 最开始的子区域是如何选择的?
  • 如何迭代求解最优的策略?
  • 如何判断其接近最优?

而且,即使是这样的整数线性规划问题,随着问题规模的增大,求解的时间也会是难以接受的。如何尽量减少求解的时间?

实际生活中,遇到的问题也并不如木材下料问题那么规整,可能伴随着大量显式或隐式的constraint,我们又如何处理它们?

如何拆分原主问题(MP)?列如何定义?

这两个问题几乎是等价的,当你确定了列的定义,也就知道如何拆分主问题了,因为所求的RMP形式上一般都满足求某个子区域内的向量的线性组合,这个向量一般就是列生成算法中所说的“列”。

所以列可以理解为是最终策略的一个元素,而最终策略,需要集合多种不同的元素达到最优化。换言之,如果最终想要得到的方案一般是一个整体的优化方案,比如最大流问题,路径规划问题等。

有些情况下,列的定义可以是与时间t相关的函数,这种方法比较取巧。

有些问题的拆分是逻辑上自然而然的,因为很容易找到有现成求解办法又使问题规模变小的RMP。比如在木材下料问题中,主问题是最小化切割方案的cost,cost被定义为浪费的木材长度。一条固定长度的木材的切割方案自然地可以通过穷举来得到。所以MP被转化为了选择切割方案的线性组合,这是典型的线性规划问题。切割方案也就是列,组合的weight自然与cost(所浪费的木材长度)所挂钩。

但在一些问题上,RMP和PP的定义是相当困难的。不一定一开始就能找到所有的方案再从中寻找,而是需要特殊的Price model去限制。

reduce cost如何定义?

通常,想要找到这个reduce cost要通过对偶理论来实现。

找到reduce cost之后就可以定义Price model。当然也有特殊结构的price model,个人认为这是整个算法中最难定义的一部分。具体怎么实现,目前还没有完全参透,先留一个坑,之后来填。

最开始的子区域是如何选择的?

在大部分情况下,最初的区域(initial set)是不会影响最终的优化结果,但它在一定程度上会影响整个算法收敛的速度。

如果最初的区域很小很简单,算法在一开始的迭代过程中将很容易提升,lower bound与upper bound的gap将很快缩小。

如何迭代求解最优的策略?

不停地向RMP加入新的列,再求解RMP。

其中,求解RMP的方法可以是任何算法,只要可以找到reduce cost为负的可行解就行。一般建模为哪类问题,就用哪类问题的常规解法即可。

但是,也存在退化现象,也就是说原问题的对偶问题的对偶最优解不是唯一的,找到的列往往不能改善目标函数值。减少退化现象的影响之一就是不使用对偶问题的基解而是使用对偶问题定义域中的内点解。

可以考虑一次加很多列减弱退化,不需要每次都求到最小的reduce cost,除了动态规划方法,·也可以涉及启发式的规则去解,只要保证负的就行。

如何判断其接近最优?

直到子问题的解全部为非负,则为整体收敛了。

但很多情况下,由于问题规模太大,当迭代到非负时,已经耗费了大量的时间与计算资源了。此时,可以用各种bounded算法去限制计算的精度,常用的有\epsilon-bounded。

 

 

生成是一种用于解决优化问题算法。它适用于问题的解空间很大且具有稀疏结构的情况,例如线性规划问题生成的基本思想是通过动态生成变量(也称为)来逐步改善目标函数值,直至找到最优解。 生成算法的步骤如下: 1. 初始解的生成:首先生成一个可行解作为初始解,可以通过一些启发式方法来得到。 2. 生成迭代:将初始解写成基本变量和非基本变量的形式,并定义一个目标函数。在每一次迭代中,通过求解对偶问题(也称为割平面问题)来生成新的。 3. 新生成:在对偶问题中,通过求解一系问题来确定新的。这些子问题可以通过使用之前迭代的结果和对偶问题的松弛性质来求解。 4. 的价值评估:对于生成的每一,计算其对原始问题的贡献(例如通过求解原始问题来计算新的目标函数值)。根据贡献的大小对进行排序。 5. 的选择和更新:选择贡献最大的并将其添加到当前解中。同时更新目标函数并重新求解原始问题,以进一步改善解。 6. 收敛判断:检查当前解是否满足停止条件。如果满足,则停止迭代,否则返回步骤3。 生成算法的关键在于如何生成新的,并且如何将这些添加到当前解中。这需要通过解对偶问题来得到的更新方向,以及通过选择贡献最大的来保证算法的效率。 总的来说,生成是一种基于松弛问题和对偶问题算法,通过动态生成和选择来逐步改善问题的解。它在解决大规模和稀疏优化问题时具有较好的性能和效率。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值