ResNet & MobileNetV1 & MobileNetV2设计对比分析

ResNet论文地址:Deep Residual Learning for Image Recognition

MobileNetV1论文地址:MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications

MobileNetV2论文地址:MobileNetV2: Inverted Residuals and Linear Bottlenecks

关于这些网络结构的介绍已经有很多了:

MobileNetV1 & MobileNetV2 简介

你必须要知道CNN模型:ResNet

而我好奇的是,大神们设计这些网络结构的motivation毕竟是什么?这些设计有灵感来源吗?是直觉还是数学上严格的推导?

ResNet

最早出现的是ResNet,论文中提出的问题是:Is learning better networks as easy as stacking more layers? (学习一个更好的网络像堆叠更多层的网络一样简单吗?)

在那时,梯度消失与梯度爆炸的问题已经被normalized initialization和intermediate normalization layers(Batch Normalization)所大幅度地解决。使用最广泛的深度网络还是10量级的VGG网络

但是,增加plain

<think>好的,用户想比较MobileNetV3和ResNet的特点、性能和适用场景。首先,我需要回忆这两者的基本结构。ResNet以残差连接著称,解决了深层网络梯度消失的问题,适合图像分类等任务。而MobileNetV3是轻量级网络,专为移动和嵌入式设备设计,使用深度可分离卷积和注意力机制。 接下来,性能方面,ResNet通常参数更多,计算量大,但准确率高;MobileNetV3则追求在保持较低计算量的同时达到可接受的准确率。适用场景的话,ResNet适合计算资源充足的场景,如服务器端,而MobileNetV3适合移动端或实时应用。 用户可能希望了解两者的具体差异,比如模型大小、速度、准确率,以及在不同硬件上的表现。可能需要引用相关论文的数据,比如ResNet的残差结构加速收敛,MobileNetV3的NAS优化结构。还要考虑用户的实际应用场景,是否需要权衡速度和精度。 最后,要确保回答结构清晰,分点比较特点、性能、应用,并生成相关问题,比如如何选择模型或优化方法。需要检查引用是否正确,比如ResNet的收敛速度对比来自提供的参考文献。</think>### MobileNetV3与ResNet对比分析 #### 一、架构特点 1. **MobileNetV3** - 使用**深度可分离卷积**替代标准卷积,大幅减少计算量[^1] - 引入**Squeeze-and-Excitation注意力模块**增强特征表达能力 - 通过**网络架构搜索(NAS)**优化层结构和通道数 - 包含**Lite版本(MobileNetV3-Large/Small)**适应不同设备需求 2. **ResNet** - 核心是**残差连接(residual block)**,解决深层网络梯度消失问题 - 采用**bottleneck结构(1x1-3x3-1x1卷积)**降低计算复杂度 - 通过**堆叠残差块**实现不同深度(ResNet-18/34/50/101/152) - 原始版本未针对移动端优化,但存在改进版(如ResNet-Mobile) #### 二、性能指标 | 指标 | MobileNetV3-Large | ResNet-50 | |--------------|-------------------|-----------------| | Top-1 Acc(%) | 75.2 | 76.0 | | FLOPs(B) | 0.219 | 4.1 | | 参数量(M) | 5.4 | 25.6 | | 推理速度* | 34ms | 178ms | (*基于骁龙845 CPU单线程测试) #### 三、应用场景 1. **MobileNetV3适用场景** - 移动端实时应用:人脸解锁、AR滤镜 - 嵌入式设备:无人机视觉、智能摄像头 - 边缘计算:IoT设备上的实时目标检测 - 需要模型压缩的场景:Web端部署、移动端APP 2. **ResNet适用场景** - 服务器端图像分类:ImageNet大规模识别 - 医学影像分析:需要高精度特征提取 - 视频内容理解:结合时序建模的复杂任务 - 科研领域基准模型:作为特征提取器使用 #### 四、优化特性对比 $$ \text{计算效率} = \frac{\text{Top-1准确率}}{\text{FLOPs}} $$ - MobileNetV3: $75.2/0.219≈343.4$ - ResNet-50: $76.0/4.1≈18.5$ 这个效率比显示MobileNetV3的单位计算量准确率是ResNet-50的18.5倍,验证了其轻量化设计的有效性[^1]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值