【剪枝】ThiNet: A Filter Level Pruning Method for Deep Neural Network Compression

这是南京大学与上海交通大学2017年在CVPR上发表的一篇论文,剪枝方法比较具有实操性。

 

剪枝的思想可以被总结为一句话:(以某一标准)评估每一个神经元的重要性,移除不重要的那些神经元,再finetune整个网络来恢复精度。

所以,剪枝一般有三个阶段:filter selection,pruning,与fine-tuning。

文章创新点:

1. filter selection:

主要思想:如果i+1层中的通道的子集的输入(x)可以近似得到i+1层的输出(y),则其它的通道可以被剪枝。

也就是说,作者认为,只要i+1层的输出不改变太多,则整个模型分类的效果也不会差太多。所以,这个方法是data-driven的,需要先输入一些数据去确定剪枝前后输出是否有变化。作者用Imagenet实验后,发现每个类别大概10张图,每张图10个位置就足够完成分类任务。

 

寻找需要剪枝的通道用的是一个贪婪算法:

<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值