sympy.polys.polytools.poly(expr, *gens, **args)
>>> poly(x*(x**2 + x - 1)**2) Poly(x**5 + 2*x**4 - x**3 - 2*x**2 + x, x, domain='ZZ')
sympy.polys.polytools.degree(f, *gens, **args)
#指定变量最大次数 >>> degree(x**2 + y*x + 1, gen=x) 2 >>> degree(x**2 + y*x + 1, gen=y) 1 >>> degree(0, x) -oo
sympy.polys.polytools.degree_list(f, *gens, **args)
#所有变量最大次数 >>> degree_list(x**2 + y*x + 1) (2, 1)
sympy.polys.polytools.LC(f, *gens, **args)
#次数最大项系数 >>> LC(4*x**2 + 2*x*y**2 + x*y + 3*y) 4
sympy.polys.polytools.LM(f, *gens, **args)
#次数最大项的单项式 >>> LM(4*x**2 + 2*x*y**2 + x*y + 3*y) x**2
sympy.polys.polytools.LT(f, *gens, **args)
#次数最大项 >>> LT(4*x**2 + 2*x*y**2 + x*y + 3*y) 4*x**2
sympy.polys.polytools.pdiv(f, g, *gens, **args)
#多项式带余除法 >>> pdiv(x**2 + 1, 2*x - 4) (2*x + 4, 20)
sympy.polys.polytools.prem(f, g, *gens, **args)
#带余除法的余数 >>> prem(x**2 + 1, 2*x - 4) 20
sympy.polys.polytools.pquo(f, g, *gens, **args)
#带余除法的商 >>> pquo(x**2 + 1, 2*x - 4) 2*x + 4 >>> pquo(x**2 - 1, 2*x - 1) 2*x + 1
sympy.polys.polytools.cofactors(f, g, *gens, **args)
#Returns polynomials (h, cff, cfg) such that h = gcd(f, g), and cff = quo(f, h) and cfg = quo(g, h) are, so called, cofactors of f and g. >>> cofactors(x**2 - 1, x**2 - 3*x + 2) (x - 1, x + 1, x - 2)
sympy.polys.polytools.gcd_list(seq, *gens, **args)
#计算多个式子的最大公约数 >>> gcd_list([x**3 - 1, x**2 - 1, x**2 - 3*x + 2]) x - 1
sympy.polys.polytools.lcm_list(seq, *gens, **args)
#多个式子的最小公倍数 >>> lcm_list([x**3 - 1, x**2 - 1, x**2 - 3*x + 2]) x**5 - x**4 - 2*x**3 - x**2 + x + 2
sympy.polys.polytools.trunc(f, p, *gens, **args)
#f模p >>> trunc(2*x**3 + 3*x**2 + 5*x + 7, 3) -x**3 - x + 1
sympy.polys.polytools.compose(f, g, *gens, **args)
#复合函数f(g) >>> compose(x**2 + x, x - 1) x**2 - x