SymPy学习之Polynomials Manipulation Module Reference

21 篇文章 0 订阅
20 篇文章 0 订阅
sympy.polys.polytools.poly(expr*gens**args)
>>> poly(x*(x**2 + x - 1)**2)
Poly(x**5 + 2*x**4 - x**3 - 2*x**2 + x, x, domain='ZZ')
sympy.polys.polytools.degree(f*gens**args)
#指定变量最大次数
>>> degree(x**2 + y*x + 1, gen=x)
2
>>> degree(x**2 + y*x + 1, gen=y)
1
>>> degree(0, x)
-oo
sympy.polys.polytools.degree_list(f, *gens, **args)
#所有变量最大次数
>>> degree_list(x**2 + y*x + 1)
(2, 1)
sympy.polys.polytools.LC(f*gens**args)
#次数最大项系数
>>> LC(4*x**2 + 2*x*y**2 + x*y + 3*y)
4
sympy.polys.polytools.LM(f*gens**args)
#次数最大项的单项式
>>> LM(4*x**2 + 2*x*y**2 + x*y + 3*y)
x**2
sympy.polys.polytools.LT(f*gens**args)
#次数最大项
>>> LT(4*x**2 + 2*x*y**2 + x*y + 3*y)
4*x**2
sympy.polys.polytools.pdiv(fg*gens**args)
#多项式带余除法
>>> pdiv(x**2 + 1, 2*x - 4)
(2*x + 4, 20)
sympy.polys.polytools.prem(fg*gens**args)
#带余除法的余数
>>> prem(x**2 + 1, 2*x - 4)
20
sympy.polys.polytools.pquo(fg*gens**args)
#带余除法的商
>>> pquo(x**2 + 1, 2*x - 4)
2*x + 4
>>> pquo(x**2 - 1, 2*x - 1)
2*x + 1
sympy.polys.polytools.cofactors(fg*gens**args)
#Returns polynomials (h, cff, cfg) such that h = gcd(f, g), and cff = quo(f, h) and cfg = quo(g, h) are, so called, cofactors of f and g.
>>> cofactors(x**2 - 1, x**2 - 3*x + 2)
(x - 1, x + 1, x - 2)
sympy.polys.polytools.gcd_list(seq*gens**args)
#计算多个式子的最大公约数
>>> gcd_list([x**3 - 1, x**2 - 1, x**2 - 3*x + 2])
x - 1
sympy.polys.polytools.lcm_list(seq*gens**args)
#多个式子的最小公倍数
>>> lcm_list([x**3 - 1, x**2 - 1, x**2 - 3*x + 2])
x**5 - x**4 - 2*x**3 - x**2 + x + 2
sympy.polys.polytools.trunc(fp*gens**args)
#f模p
>>> trunc(2*x**3 + 3*x**2 + 5*x + 7, 3)
-x**3 - x + 1
sympy.polys.polytools.compose(fg*gens**args)
#复合函数f(g)
>>> compose(x**2 + x, x - 1)
x**2 - x


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值