- 题目描述
在一个由 0 和 1 组成的二维矩阵内,找到只包含 1 的最大正方形,并返回其面积。
- 示例
输入:
1 0 1 0 0
1 0 1 1 1
1 1 1 1 1
1 0 0 1 0
输出: 4
- 解决思路
参考网友大神:
如果我们能够判断一个点是正方形右下角的点的话,那么肯定可以确定它的左边、上边和左上三个点,分别都是某个正方形的右下角的点。
关于边长:以当前点为右下角的正方形的边长,最多比左边、上边和左上的正方形的边长多1,最好的情况是这三个正方形的边长大小相同(不一定是1),那么加上当前点就可以凑成一个更大的正方形。 如果这三个正方形边长不一样,那么合起来就会缺了某个角,因此就要取这三个边长中的最小值加1。
用dp数组来记录在当前位置的元素上可以取到的最大正方形的边长的值。(以该点为正方形的右下角)。用res值来维护整个矩阵中可以取到的最大正方形的边长的值。在迭代遍历的过程中,每一次都要比较和更新dp数组和res的值。
- 代码
class Solution(object):
def maximalSquare(self, matrix):
"""
:type matrix: List[List[str]]
:rtype: int
"""
#矩阵的行数m,列数n
m = len(matrix)
if m &