Softmax函数详解以及求导过程

17 篇文章 0 订阅 ¥299.90 ¥399.90
本文详细介绍了softmax函数在多分类中的应用及其求导过程,通过实例展示了softmax如何将多个神经元输出映射到(0,1)区间并解释其在句法分析等实际问题中的作用。同时,解释了在梯度下降法中softmax函数的导数计算,以及如何利用交叉熵损失函数简化求导步骤。" 5867799,239833,TCHAR函数映射与搜索,"['函数', '访问', 'UI', '宏', '命令']
摘要由CSDN通过智能技术生成

这几天学习了一下softmax激活函数,以及它的梯度求导过程,整理一下便于分享和交流!

softmax函数

softmax用于多分类过程中,它将多个神经元的输出,映射到(0,1)区间内,可以看成概率来理解,从而来进行多分类.

假设我们有一个数组, V V V V

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

安替-AnTi

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值