AI笔记: 线性回归模型梯度下降法求解

本文详细介绍了梯度下降法在解决线性回归模型中的应用,包括普通最小二乘法(OLS)、岭回归和Lasso回归的梯度下降实现。讨论了学习率的选择、特征处理以及随机梯度下降法的效率,并提到了Scikit-Learn中的SGDRegressor实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

梯度

  • 在微积分中,一元函数f(x)在x处的梯度为函数在该点的导数 df⁄dx
  • 对多元函数 f ( x 1 , . . . , x D ) f(x_1, ..., x_D)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Wang's Blog

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值