YOLOv5代码详解(test.py部分)

2. test.py

该部分主要用于运行train.py时,计算每个epoch的mAP。
PS,与train.py相似的部分就不再阐述。

2.1 设置超参数

权重,数据,batch size,图像尺寸,使用哪张显卡,数据增强,计算mAP。

if __name__ == '__main__':
    parser = argparse.ArgumentParser(prog='test.py')
    parser.add_argument('--weights', type=str, default='weights/best.pt', help='model.pt path')
    parser.add_argument('--data', type=str, default='data/coco.yaml', help='*.data path')
    parser.add_argument('--batch-size', type=int, default=16, help='size of each image batch')
    parser.add_argument('--img-size', type=int, default=608, help='inference size (pixels)')
    parser.add_argument('--conf-thres', type=float, default=0.001, help='object confidence threshold')
    parser.add_argument('--iou-thres', type=float, default=0.65, help='IOU threshold for NMS')
    parser.add_argument('--save-json', action='store_true', help='save a cocoapi-compatible JSON results file')
    parser.add_argument('--task', default='', help="'val', 'test', 'study'")
    parser.add_argument('--device', default='1', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
    parser.add_argument('--single-cls', action='store_true', help='treat as single-class dataset')
    parser.add_argument('--augment', action='store_true', help='augmented inference')
    parser.add_argument('--verbose', action='store_true', help='report mAP by class')
    opt = parser.parse_args()
    opt.img_size = check_img_size(opt.img_size)
    opt.save_json = opt.save_json or opt.data.endswith('coco.yaml')
    opt.data = check_file(opt.data)  # check file
    print(opt)

2.2 设置任务(验证,测试,学习)

    # task = 'val', 'test', 'study'
    if opt.task in ['val','test']:  # (default) run normally
        test(opt.data,
             opt.weights,
             opt.batch_size,
             opt.img_size,
             opt.conf_thres,
             opt.iou_thres,
             opt.save_json,
             opt.single_cls,
             opt.augment,
             opt.verbose)

    elif opt.task == 'study':  # run over a range of settings and save/plot
        for weights in ['yolov5s.pt', 'yolov5m.pt', 'yolov5l.pt', 'yolov5x.pt']:
            f = 'study_%s_%s.txt' % (Path(opt.data).stem, Path(weights).stem)  # filename to save to
            x = list(range(288, 896, 64))  # x axis
            y = []  # y axis
            for i in x:  # img-size
                print('\nRunning %s point %s...' % (f, i))
                r, _, t = test(opt.data, weights, opt.batch_size, i, opt.conf_thres, opt.iou_thres, opt.save_json)
                y.append(r + t)  # results and times
            np.savetxt(f, y, fmt='%10.4g')  # save
        os.system('zip -r study.zip study_*.txt')
        # plot_study_txt(f, x)  # plot

“study”应该是可以修改预训练权重的操作。

2.3 测试函数

2.3.1 初始化模型

判断模型是否存在,若不存在则训练为假,移除之前的测试结果,下载模型。

    # Initialize/load model and set device
    if model is None:
        training = False
        device = torch_utils.select_device(opt.device, batch_size=batch_size)
        half = device.type != 'cpu'  # half precision only supported on CUDA

        # Remove previous
        for f in glob.glob('test_batch*.jpg'):
            os.remove(f)

        # Load model
        google_utils.attempt_download(weights)
        model = torch.load(weights, map_location=device)['model'].float()  # load to FP32
        torch_utils.model_info(model)
        model.fuse()
        model.to(device)
        if half:
            model.half()  # to FP16

        # Multi-GPU disabled, incompatible with .half()
        # if device.type != 'cpu' and torch.cuda.device_count() > 1:
        #     model = nn.DataParallel(model)

    else:  # called by train.py
        training = True
        device = next(model.parameters()).device  # get model device
        # half disabled https://github.com/ultralytics/yolov5/issues/99
        half = False  # device.type != 'cpu' and torch.cuda.device_count() == 1
        if half:
            model.half()  # to FP16

2.3.2 判断设备类型并仅使用一张GPU进行测试

判断设备类型并仅仅单GPU支持一半的精度。

    # Half
    half = device.type != 'cpu' and torch.cuda.device_count() == 1  # half precision only supported on single-GPU
    if half:
        model.half()  # to FP16

2.3.3 获取配置文件路径和文件参数

获取配置文件yaml中的nc参数。

    # Configure
    model.eval()
    with open(data) as f:
        data = yaml.load(f, Loader=yaml.FullLoader)  # model dict
    nc = 1 if single_cls else int(data['nc'])  # number of classes
    iouv = torch.linspace(0.5, 0.95, 10).to(device)  # iou vector for mAP@0.5:0.95
    niou = iouv.numel()

2.3.4 数据获取

  1. 测试数据的获取
  2. 使用NMS
  3. 初始化图片大小
  4. 获取测试或验证图片路径
  5. 用梯度下降运行模型、计算损失和运行NMS
  6. 计算每张测试图片的数据并保存到json文件中
  7. 画出某几张batch图片(包括GT和预测)
    # Dataloader
    if dataloader is None:  # not training
        merge = opt.merge  # use Merge NMS
        img = torch.zeros((1, 3, imgsz, imgsz), device=device)  # init img
        _ = model(img.half() if half else img) if device.type != 'cpu' else None  # run once
        path = data['test'] if opt.task == 'test' else data['val']  # path to val/test images
        dataloader = create_dataloader(path, imgsz, batch_size, int(max(model.stride)), opt,
                                       hyp=None, augment=False, cache=False, pad=0.5, rect=True)[0]

    seen = 0
    names = model.names if hasattr(model, 'names') else model.module.names
    coco91class = coco80_to_coco91_class()
    s = ('%20s' + '%12s' * 6) % ('Class', 'Images', 'Targets', 'P', 'R', 'mAP@.5', 'mAP@.5:.95')
    p, r, f1, mp, mr, map50, map, t0, t1 = 0., 0., 0., 0., 0., 0., 0., 0., 0.
    loss = torch.zeros(3, device=device)
    jdict, stats, ap, ap_class = [], [], [], []
    for batch_i, (img, targets, paths, shapes) in enumerate(tqdm(dataloader, desc=s)):
        img = img.to(device)
        img = img.half() if half else img.float()  # uint8 to fp16/32
        img /= 255.0  # 0 - 255 to 0.0 - 1.0
        targets = targets.to(device)
        nb, _, height, width = img.shape  # batch size, channels, height, width
        whwh = torch.Tensor([width, height, width, height]).to(device)

        # Disable gradients
        with torch.no_grad():
            # Run model
            t = torch_utils.time_synchronized()
            inf_out, train_out = model(img, augment=augment)  # inference and training outputs
            t0 += torch_utils.time_synchronized() - t

            # Compute loss
            if training:  # if model has loss hyperparameters
                loss += compute_loss([x.float() for x in train_out], targets, model)[1][:3]  # GIoU, obj, cls

            # Run NMS
            t = torch_utils.time_synchronized()
            output = non_max_suppression(inf_out, conf_thres=conf_thres, iou_thres=iou_thres, merge=merge)
            t1 += torch_utils.time_synchronized() - t

        # Statistics per image
        for si, pred in enumerate(output):
            labels = targets[targets[:, 0] == si, 1:]
            nl = len(labels)
            tcls = labels[:, 0].tolist() if nl else []  # target class
            seen += 1

            if pred is None:
                if nl:
                    stats.append((torch.zeros(0, niou, dtype=torch.bool), torch.Tensor(), torch.Tensor(), tcls))
                continue

            # Append to text file
            # with open('test.txt', 'a') as file:
            #    [file.write('%11.5g' * 7 % tuple(x) + '\n') for x in pred]

            # Clip boxes to image bounds
            clip_coords(pred, (height, width))

            # Append to pycocotools JSON dictionary
            if save_json:
                # [{"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236}, ...
                image_id = int(Path(paths[si]).stem.split('_')[-1])
                box = pred[:, :4].clone()  # xyxy
                scale_coords(img[si].shape[1:], box, shapes[si][0], shapes[si][1])  # to original shape
                box = xyxy2xywh(box)  # xywh
                box[:, :2] -= box[:, 2:] / 2  # xy center to top-left corner
                for p, b in zip(pred.tolist(), box.tolist()):
                    jdict.append({'image_id': image_id,
                                  'category_id': coco91class[int(p[5])],
                                  'bbox': [round(x, 3) for x in b],
                                  'score': round(p[4], 5)})

            # Assign all predictions as incorrect
            correct = torch.zeros(pred.shape[0], niou, dtype=torch.bool, device=device)
            if nl:
                detected = []  # target indices
                tcls_tensor = labels[:, 0]

                # target boxes
                tbox = xywh2xyxy(labels[:, 1:5]) * whwh

                # Per target class
                for cls in torch.unique(tcls_tensor):
                    ti = (cls == tcls_tensor).nonzero().view(-1)  # prediction indices
                    pi = (cls == pred[:, 5]).nonzero().view(-1)  # target indices

                    # Search for detections
                    if pi.shape[0]:
                        # Prediction to target ious
                        ious, i = box_iou(pred[pi, :4], tbox[ti]).max(1)  # best ious, indices

                        # Append detections
                        for j in (ious > iouv[0]).nonzero():
                            d = ti[i[j]]  # detected target
                            if d not in detected:
                                detected.append(d)
                                correct[pi[j]] = ious[j] > iouv  # iou_thres is 1xn
                                if len(detected) == nl:  # all targets already located in image
                                    break

            # Append statistics (correct, conf, pcls, tcls)
            stats.append((correct.cpu(), pred[:, 4].cpu(), pred[:, 5].cpu(), tcls))

        # Plot images
        if batch_i < 1:
            f = 'test_batch%g_gt.jpg' % batch_i  # filename
            plot_images(img, targets, paths, f, names)  # ground truth
            f = 'test_batch%g_pred.jpg' % batch_i
            plot_images(img, output_to_target(output, width, height), paths, f, names)  # predictions

2.3.5 计算map数据

    # Compute statistics
    stats = [np.concatenate(x, 0) for x in zip(*stats)]  # to numpy
    if len(stats):
        p, r, ap, f1, ap_class = ap_per_class(*stats)
        p, r, ap50, ap = p[:, 0], r[:, 0], ap[:, 0], ap.mean(1)  # [P, R, AP@0.5, AP@0.5:0.95]
        mp, mr, map50, map = p.mean(), r.mean(), ap50.mean(), ap.mean()
        nt = np.bincount(stats[3].astype(np.int64), minlength=nc)  # number of targets per class
    else:
        nt = torch.zeros(1)

2.3.5 打印结果(图片,速度),保存结果至json,并返回结果

    # Print results
    pf = '%20s' + '%12.3g' * 6  # print format
    print(pf % ('all', seen, nt.sum(), mp, mr, map50, map))

    # Print results per class
    if verbose and nc > 1 and len(stats):
        for i, c in enumerate(ap_class):
            print(pf % (names[c], seen, nt[c], p[i], r[i], ap50[i], ap[i]))

    # Print speeds
    t = tuple(x / seen * 1E3 for x in (t0, t1, t0 + t1)) + (imgsz, imgsz, batch_size)  # tuple
    if not training:
        print('Speed: %.1f/%.1f/%.1f ms inference/NMS/total per %gx%g image at batch-size %g' % t)

    # Save JSON
    if save_json and map50 and len(jdict):
        imgIds = [int(Path(x).stem.split('_')[-1]) for x in dataloader.dataset.img_files]
        f = 'detections_val2017_%s_results.json' % \
            (weights.split(os.sep)[-1].replace('.pt', '') if weights else '')  # filename
        print('\nCOCO mAP with pycocotools... saving %s...' % f)
        with open(f, 'w') as file:
            json.dump(jdict, file)

        try:
            from pycocotools.coco import COCO
            from pycocotools.cocoeval import COCOeval

            # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb
            cocoGt = COCO(glob.glob('../coco/annotations/instances_val*.json')[0])  # initialize COCO ground truth api
            cocoDt = cocoGt.loadRes(f)  # initialize COCO pred api

            cocoEval = COCOeval(cocoGt, cocoDt, 'bbox')
            cocoEval.params.imgIds = imgIds  # image IDs to evaluate
            cocoEval.evaluate()
            cocoEval.accumulate()
            cocoEval.summarize()
            map, map50 = cocoEval.stats[:2]  # update results (mAP@0.5:0.95, mAP@0.5)
        except:
            print('WARNING: pycocotools must be installed with numpy==1.17 to run correctly. '
                  'See https://github.com/cocodataset/cocoapi/issues/356')

    # Return results
    model.float()  # for training
    maps = np.zeros(nc) + map
    for i, c in enumerate(ap_class):
        maps[c] = ap[i]
    return (mp, mr, map50, map, *(loss.cpu() / len(dataloader)).tolist()), maps, t

  • 27
    点赞
  • 174
    收藏
    觉得还不错? 一键收藏
  • 42
    评论
### 回答1: YOLOv5 中的 detect.py 文件是用来进行目标检测的主要脚本。它包含了对输入图片/视频进行预处理、模型预测、后处理等一系列操作。其中包含了许多函数,可以帮助我们更好的理解 YOLOv5 的工作原理和实现。 ### 回答2: Yolov5的detect.py是YOLO中最为重要的文件之一,是实现目标检测的主要文件。这个文件的代码详解包括以下几个方面。 1.导入必要模块和包: detect.py首先要导入必要模块和包,例如PyTorch中的一些工具包、一些模型(如yolov5)、数据增强、摄像头、命令行参数等等。这个步骤是整个代码的必要内容,以保证下面的代码可以正常运行。 2.加载模型并设置设备: 在detect.py文件中,我们需要通过调用指定的模型(如yolov5s、yolov5m、yolov5l和yolov5x)以及相关的预训练权重来进行目标检测。在完成模型加载后,我们需要根据运行环境设置设备,例如,如果有可用GPU,我们可以将模型放到GPU中来进行运算。 3.载入图片或视频: 在进行目标检测时,我们需要载入待处理的图片或视频文件。通过调用OpenCV的相关功能,我们可以从本地文件或网络直播摄像机中读取视频,而从本地文件夹中读取图片。 4.预处理: 预处理是在将图片或视频传输到模型中进行处理之前进行的。在yolov5 detect.py文件中,主要进行以下预处理: (1)调整大小:将图片或视频帧调整至模型所要求的大小。 (2)转化色彩空间:将彩色图片转化为灰度图片或者RGB色空间。 (3)标准化像素值:调整图片或视频帧的像素值范围。 (4)转置和转换格式:对于输入数据,需要将其转置并以适当的格式进行存储。 5.执行推理(inference): 在推理过程中,将预处理后的数据输入到模型中,得到模型的输出(包括检测框、类别、置信度等信息)。这里是整个代码的核心部分,包括前向传播的计算和预测输出的后处理过程。其中,NMS(non-max suppression)是非常关键的一步,因为它能有效减少多余的检测框,精简输出结果。 6.后处理: 预测结果需要进行一些后处理,包括: (1)将检测框转换为像素坐标。 (2)根据置信度和IoU(Intersection over Union)过滤检测框。 (3)在图片或帧上绘制检测框、标签和置信度等信息。 (4)最后,将处理后的图片或视频帧输出到指定位置。 综上所述,yolov5 detect.py文件是实现目标检测的核心文件,通过对文件每一部分详解,可以更好地理解代码的含义和作用。 ### 回答3: YOLOv5是目前最优秀的目标检测网络之一。在它的代码中,detect.py文件是用来实现检测过程的。下面我们来详细分析一下该文件的代码。 首先,我们需要导入一些必要的库,这些库包括以及它们所提供的模块,如torch、models、utils、general等。然后,我们需要加载一些模型配置文件和权重文件,它们通常是在训练过程中生成的。我们可以从命令行参数中读取这些文件的路径和一些其他的参数信息,比如输入图片的分辨率、置信度阈值和NMS的参数等等。 然后,我们要加载模型并设置为评估模式。这里加载模型的方式是通过配置文件中指定的模型类型和权重文件的路径来进行加载。在模型加载完成后,我们要为检测结果生成一个输出文件的路径和名称。在检测结果输出文件中,每一行的格式是“image_path confidence x_min y_min x_max y_max label”。 接下来,我们要遍历输入图片的路径集合,对于每张输入图片,我们要先对其进行预处理。这个预处理过程包括将图片转换为模型需要的数据格式、将数据放入GPU中进行推理等。然后,我们要对图像进行前向传递,并根据置信度阈值和NMS的参数,筛选出置信度较高的目标框物体。最后,我们将结果写入输出文件,以供后续的处理和分析。 总的来说,detect.py文件主要是用于对输入的图片进行目标检测,它将加载预训练模型和配置文件,并将检测结果写入输出文件。它还提供了一些可配置的参数,比如置信度阈值和NMS的参数,这些参数可以帮助我们调整模型的检测效果和性能。整个检测过程需要先对输入图片进行预处理,然后进行前向传递和筛选,并将最终结果写入输出文件。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 42
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值