【高等数学】第一章 空间解析几何与向量代数

第一章 空间解析几何与向量代数

1 空间直角坐标系

1.1 空间直角坐标系的建立

在这里插入图片描述

1.2 空间中两点的距离公式

在这里插入图片描述

空间中两点的距离公式:
∣ P 1 P 2 ∣ = ( x 1 − x 2 ) 2 + ( y 1 − y 2 ) 2 + ( z 1 − z 2 ) 2 \lvert P_1P_2\rvert = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2 + (z_1 - z_2)^2} P1P2=(x1x2)2+(y1y2)2+(z1z2)2

2 向量代数

2.1 向量的概念

向量的模:|AB|。

零向量:模为0的向量。

[规定]零向量⊥任意向量;(互相垂直的向量点乘积等于0)即:
a ⃗ ⊥ b ⃗ 则: a ⃗ ⋅ b ⃗ = x a x b + y a y b + z a z b = 0 \vec{a} \perp \vec{b}则: \vec{a} \cdot \vec{b} = x_ax_b+y_ay_b+z_az_b=0 a b 则:a b =xaxb+yayb+zazb=0
零向量//任何向量;(也叫共线)。

单位向量:模为0的向量。

向量相等:长度相等(模);且方向相同。

2.2 向量的加减法

在这里插入图片描述

2.3 向量与数的乘积

与数乘积
a ( b n ⃗ ) = b ( a n ⃗ ) = ( a b ) n ⃗ a(b \vec{n}) = b(a \vec{n}) = (ab)\vec{n} a(bn )=b(an )=(ab)n

( a + b ) n ⃗ = a n ⃗ + b n ⃗ (a+b)\vec{n} = a\vec{n} + b\vec{n} (a+b)n =an +bn

a ( m ⃗ + n ⃗ ) = a n ⃗ + b n ⃗ a(\vec{m}+\vec{n}) = a\vec{n} + b\vec{n} a(m +n )=an +bn

向量的单位化
a 0 ⃗ = 1 ∣ a ⃗ ∣ a ⃗ \vec{a^0} = {\frac{1}{\vert \vec{a} \rvert}} \vec{a} a0 =a 1a
向量的模: {x0,y0,z0}是向量a的坐标表示
∣ a ⃗ ∣ = ( x 0 ) 2 + ( y 0 ) 2 + ( z 0 ) 2 {\vert \vec{a} \rvert} = \sqrt{(x_0)^2 + (y_0)^2 + (z_0)^2} a =(x0)2+(y0)2+(z0)2

2.4 向量的投影(结果是数值)

在这里插入图片描述

P r j a b ⃗ = ∣ b ⃗ ∣ cos ⁡ θ Prj_a\vec{b} = \vert \vec{b} \rvert \cos{\theta} Prjab =b cosθ

读作:向量b在a方向的投影;θ是向量b与x轴的夹角。

投影向量线性性质

在这里插入图片描述

P r j x ( a ⃗ + b ⃗ ) = P r j x a ⃗ + P r j x b ⃗ Prj_x(\vec{a}+\vec{b}) = Prj_x\vec{a} + Prj_x\vec{b} Prjx(a +b )=Prjxa +Prjxb

2.5 向量的坐标

a ⃗ = ( x a , y a , z a ) \vec{a} = \left(x_a,y_a,z_a \right) a =(xa,ya,za)

给定非零向量v={a,b,c};它与x轴,y轴,z轴的夹角α,β,γ的余弦值。
cos ⁡ α = a ∣ v ⃗ ∣ = a a 2 + b 2 + c 2 \cos{\alpha}=\frac{a}{\vert \vec{v} \rvert} = \frac{a}{\sqrt{a^2+b^2+c^2}} cosα=v a=a2+b2+c2 a

cos ⁡ β = b ∣ v ⃗ ∣ = b a 2 + b 2 + c 2 \cos{\beta}=\frac{b}{\vert \vec{v} \rvert} = \frac{b}{\sqrt{a^2+b^2+c^2}} cosβ=v b=a2+b2+c2 b

cos ⁡ γ = c ∣ v ⃗ ∣ = c a 2 + b 2 + c 2 \cos{\gamma}=\frac{c}{\vert \vec{v} \rvert} = \frac{c}{\sqrt{a^2+b^2+c^2}} cosγ=v c=a2+b2+c2 c

所以:
cos ⁡ 2 α + cos ⁡ 2 β + cos ⁡ 2 γ = 1 {\cos^2{\alpha}} + {\cos^2{\beta}} + {\cos^2{\gamma}} = 1 cos2α+cos2β+cos2γ=1
同时,将向量v单位化:
v 0 ⃗ = 1 ∣ v ⃗ ∣ v ⃗ = { cos ⁡ α , cos ⁡ β , cos ⁡ γ } \vec{v^0} = {\frac{1}{\vert \vec{v} \rvert}}{\vec{v}} = \{\cos{\alpha},\cos{\beta},\cos{\gamma} \} v0 =v 1v ={cosα,cosβ,cosγ}

图示化的表示:

在这里插入图片描述

3 向量的数量积(点乘)与向量积(叉乘)

向量的数量积:(θ是向量a与向量b的夹角)–>结果是数值
a ⃗ ⋅ b ⃗ = ∣ a ⃗ ∣ ∣ b ⃗ ∣ cos ⁡ θ \vec{a} \cdot \vec{b} = {\vert \vec{a} \rvert} {\vert \vec{b} \rvert} {\cos{\theta}} a b =a b cosθ
因为根据向量的投影定理知:
P r j b ⃗ a ⃗ = ∣ a ⃗ ∣ cos ⁡ θ ; P r j a ⃗ b ⃗ = ∣ b ⃗ ∣ cos ⁡ θ Prj_{\vec{b}}{\vec{a}}={\vert \vec{a} \rvert}{\cos{\theta}};Prj_{\vec{a}}{\vec{b}}={\vert \vec{b} \rvert}{\cos{\theta}} Prjb a =a cosθPrja b =b cosθ
所以:
a ⃗ ⋅ b ⃗ = ∣ a ⃗ ∣ P r j a ⃗ b ⃗ = ∣ b ⃗ ∣ P r j b ⃗ a ⃗ \vec{a} \cdot \vec{b} = {\vert \vec{a} \rvert}{Prj_{\vec{a}}{\vec{b}}} = {\vert \vec{b} \rvert}{Prj_{\vec{b}}{\vec{a}}} a b =a Prja b =b Prjb a
交换律/结合律/分配律

在这里插入图片描述

数量积坐标表示:

设向量:
a ⃗ = { a 1 , a 2 , a 3 } ; b ⃗ = { b 1 , b 2 , b 3 } ; \vec{a} = \{ a_1,a_2,a_3\}; \vec{b} = \{ b_1,b_2,b_3\}; a ={a1,a2,a3};b ={b1,b2,b3};
则:
a ⃗ = a 1 i ⃗ + a 2 j ⃗ + a 3 k ⃗ ; b ⃗ = b 1 i ⃗ + b 2 j ⃗ + b 3 k ⃗ \vec{a} = {a_1}{\vec{i}}+{a_2}{\vec{j}}+{a_3}{\vec{k}}; \\ \vec{b} = {b_1}{\vec{i}}+{b_2}{\vec{j}}+{b_3}{\vec{k}} a =a1i +a2j +a3k ;b =b1i +b2j +b3k
由此,计算得:
a ⃗ ⋅ b ⃗ = a 1 b 1 + a 2 b 2 + c 1 c 2 \vec{a} \cdot \vec{b} = a_1b_1 + a_2b_2 + c_1c_2 a b =a1b1+a2b2+c1c2
ab;则a·b=0。

线性运算:
a ⃗ + b ⃗ = ( a 1 + b 1 ) i ⃗ + ( a 2 + b 2 ) j ⃗ + ( a 3 + b 3 ) k ⃗ = { a 1 + b 1 , a 2 + b 2 , a 3 + b 3 } \vec{a} + \vec{b} = (a_1+b_1)\vec{i}+(a_2+b_2)\vec{j}+(a_3+b_3)\vec{k} = \{a_1+b_1,a_2+b_2,a_3+b_3 \} a +b =(a1+b1)i +(a2+b2)j +(a3+b3)k ={a1+b1,a2+b2,a3+b3}
a//b;则:
a 1 b 1 = a 2 b 2 = a 3 b 3 \frac{a_1}{b_1} = \frac{a_2}{b_2} = \frac{a_3}{b_3} b1a1=b2a2=b3a3

4 空间中的曲面与曲线

4.1 曲面方程

4.1.1 空间中的平面

定义1:点P(x,y,z);到两个已知点A(a1,a2,a3)和B(b1,b2,b3)的距离相等;则点P的轨迹即为A,B两点之间的垂直平分面。

**解:**由题目知:|PA| = |PB|;得:
( x − a 1 ) 2 + ( x − a 2 ) 2 + ( x − a 3 ) 2 = ( x − b 1 ) 2 + ( x − b 2 ) 2 + ( x − b 3 ) 2 \sqrt{(x-a_1)^2+(x-a_2)^2+(x-a_3)^2} = \sqrt{(x-b_1)^2+(x-b_2)^2+(x-b_3)^2} (xa1)2+(xa2)2+(xa3)2 =(xb1)2+(xb2)2+(xb3)2
化简得:
A x + B y + C z + D = 0 Ax+By+Cz+D=0 Ax+By+Cz+D=0
即代表空间中某个平面的方程。

在这里插入图片描述

4.1.2 空间中的曲面(包含了平面)
F ( x , y , z ) = 0 F(x,y,z)=0 F(x,y,z)=0
该三元方程的所有解构成空间中的曲面。

4.1.3 球面方程
( x − a ) 2 + ( y − b ) 2 + ( z − c ) 2 = R 2 (x-a)^2+(y-b)^2+(z-c)^2 = R^2 (xa)2+(yb)2+(zc)2=R2
代表球心在点(a,b,c)处,球半径为R的球面方程。

4.1.4 曲面方程的对称性:

1) 曲面S:F(x,y,z)=0关于Oxy对称的充要条件是:

F(x,y,-z) = F(x,y,z)

2) 曲面S:F(x,y,z)=0关于Oxz对称的充要条件是:

F(x,-y,z) = F(x,y,z)

3) 曲面S:F(x,y,z)=0关于Oyz对称的充要条件是:

F(-x,y,z) = F(x,y,z)

4.1.5 旋转曲面

平面上的曲线C;绕它所在平面的一条直线L旋转一周所形成的曲面称为旋转曲面。其中,C母线L旋转轴

**假设:**Oyz平面上有曲线C:f(y,z)=0;那么,他绕z轴旋转生成的曲面方程是:
f ( ± x 2 + y 2 , z ) = 0 f(\pm \sqrt{x^2+y^2},z) = 0 f(±x2+y2 ,z)=0
技巧:绕谁转谁不变。

在这里插入图片描述

4.1.6 柱面方程(母线平行于坐标轴)

平行于定直线L并沿曲线C移动的动直线l所生成的曲面称为柱面;其中动直线l在移动中的每个位置称为母线;曲线C称为准线
f ( x , y ) = 0 f(x,y)=0 f(x,y)=0
即为以平面Oxy上的曲线C:f(x,y)=0为准线,目前平行于z轴的柱面方程。

典型的:

1 )   x 2 a 2 − y 2 b 2 = 1 1)\ \frac{x^2}{a^2}-\frac{y^2}{b^2}=1 1) a2x2b2y2=1

2 )   y = x 2 2)\ y=x^2 2) y=x2

3 ) x 2 + z 2 = r 2 3) x^2+z^2=r^2 3)x2+z2=r2

分别代表:

1)以双曲线为准线,母线平行于z轴的柱面;称为:双曲柱面。

2)以抛物线为准线,母线平行于z轴的柱面;称为:抛物柱面。

3)以圆为准线;母线平行于y轴的柱面;称为:圆柱面。

技巧:方程中没有哪个轴就是平行于那个轴(该轴上可取任意值)。

4.2 空间中的曲线方程

4.2.1 空间曲线的一般方程

空间曲线可以看作是空间中2个曲面的交线。

空间曲面:S1:F(x,y,z)=0 S2:G(x,y,z)=0

它们的交线是C;则C的方程:(C上的点都要同时满足S1和S2)
{ F ( x , y , z ) = 0 G ( x , y , z ) = 0 \left\{\begin{aligned} F(x,y,z)=0 \\ G(x,y,z)=0 \end{aligned}\right. {F(x,y,z)=0G(x,y,z)=0
这是空间曲线的一般方程。

判断形状时,务必注意开根号情况下正负号的问题。

4.2.2 空间曲线的参数方程
C : { x = x ( t ) , y = y ( t ) ,          ( a ≦ t ≦ b ) z = z ( t ) C: \left\{\begin{aligned} x=x(t), \\ y=y(t), \ \ \ \ \ \ \ \ (a\leqq t \leqq b) \\ z=z(t) \end{aligned}\right. C: x=x(t),y=y(t),        (atb)z=z(t)

例子:
C : { x = a cos ⁡ θ , y = a sin ⁡ θ , z = k θ C: \left\{\begin{aligned} x=a\cos{\theta}, \\ y=a\sin{\theta}, \\ z=k\theta \end{aligned}\right. C: x=acosθ,y=asinθ,z=kθ
代表螺旋线。

4.3 空间曲线在坐标面上的投影

**解法:**曲线方程组做同解变形后将与投影平面垂直的那个坐标轴消去即代表曲线方程在该坐标面的投影曲线方程。

若求在Oxy平面的投影曲线,则消去z。其他平面同理。

**例题:**求空间曲线C:
C : { x 2 + y 2 + z 2 = 1 x 2 + ( y − 1 ) 2 + ( z − 1 ) 2 = 1 C: \left\{\begin{aligned} x^2+y^2+z^2=1 \\ x^2+(y-1)^2+(z-1)^2=1 \end{aligned}\right. C:{x2+y2+z2=1x2+(y1)2+(z1)2=1
在Oxy平面和Oyz平面的投影曲线方程。

**解:**消去z即为Oxy平面的投影方程:(注意不要漏了z=0;否则是柱面。)
L : { 2 x 2 + 4 ( y − 1 2 ) 2 = 1 z = 0 L: \left\{\begin{aligned} 2x^2+4(y-\frac{1}{2})^2=1 \\ z=0 \end{aligned}\right. L: 2x2+4(y21)2=1z=0
备注:C式相加而不是相减,相见就直接消掉了x。

消去x即为Oyz平面的投影方程:
L : { y + z = 1 x = 0 L: \left\{\begin{aligned} y+z=1 \\ x=0 \end{aligned}\right. L:{y+z=1x=0

5 空间中的平面与直线

5.1 平面方程

一 平面的点法式方程

已知平面过定点P0(x0,y0,z0);以及该平面的法向量n(A,B,C);则该平面的方程为:
A ( x − x 0 ) + B ( y − y 0 ) + C ( z − z 0 ) = 0 A(x-x_0)+B(y-y_0)+C(z-z_0)=0 A(xx0)+B(yy0)+C(zz0)=0
利用的是:平面上的点P(x,y,z)与P0确定的向量与法向量n垂直。

在这里插入图片描述

二 一般式方程

上式化简后得:
A x + B y + C z + D = 0 Ax+By+Cz+D=0 Ax+By+Cz+D=0

三 截距式方程

在这里插入图片描述

有条件:平面与3个坐标轴都相交分别相交于(a,0,0),(0,b,0),(0,0,z);此时方程可直接写出:
x a + y b + z c = 1 \frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1 ax+by+cz=1
并由此可知:
a = − D A b = − D B c = − D C a=\frac{-D}{A} \\b=\frac{-D}{B} \\c=\frac{-D}{C} a=ADb=BDc=CD

四 关于坐标轴与平面平行

A=0;平面平行于x轴。(x可以取任意值)

B=0;平面平行于y轴。(y可以取任意值)

C=0;平面平行于z轴。(z可以取任意值)

A=B=0;平面平行Oxy平面。(xy可以取任意值)

A=C=0;平面平行Oxz平面。(xz可以取任意值)

B=C=0;平面平行Oyz平面。(yz可以取任意值)

五 过三点求平面方程

解法一 3点坐标分别带入平面的一般式方程,利用方程解出A/B/C/D

解法二 设平面法向量n(a,b,c);3个点坐标可构成3个向量;分别与n乘积为0;方程组解出a,b,c;最后带入一点坐标即可。

六 两个平面的夹角

平面S1:
A 1 x + B 1 y + C 1 z + D 1 = 0 A_1x+B_1y+C_1z+D_1=0 A1x+B1y+C1z+D1=0
平面S2:
A 2 x + B 2 y + C 2 z + D 2 = 0 A_2x+B_2y+C_2z+D_2=0 A2x+B2y+C2z+D2=0
之间的夹角:(n1n2分别是两个平面的法向量)
cos ⁡ θ = n 1 ⃗ ⋅ n 2 ⃗ ∣ n 1 ⃗ ∣ ∣ n 2 ⃗ ∣ = ∣ A 1 A 2 + B 1 B 2 + C 1 C 2 ∣ A 1 2 + B 1 2 + C 1 2 A 2 2 + B 2 2 + C 2 2 \cos{\theta} = \frac{\vec{n_1} \cdot \vec{n_2}}{\vert \vec{n_1} \rvert \vert \vec{n_2} \rvert } = \frac{\vert A_1A_2+B_1B_2+C_1C_2 \rvert}{\sqrt{A_1^2+B_1^2+C_1^2} \sqrt{A_2^2+B_2^2+C_2^2}} cosθ=n1 n2 n1 n2 =A12+B12+C12 A22+B22+C22 A1A2+B1B2+C1C2
**注意:**需要取锐角;即cosθ > 0的角度。因此,结果可能是θ也可能是π-θ。

七 两平面的位置关系

S1//S2充要条件:
A 1 A 2 = B 1 B 2 = C 1 C 2 \frac{A_1}{A_2}=\frac{B_1}{B_2}=\frac{C_1}{C_2} A2A1=B2B1=C2C1
S1⊥S2充要条件:
A 1 A 2 + B 1 B 2 + C 1 C 2 = 0 A_1A_2+B_1B_2+C_1C_2 = 0 A1A2+B1B2+C1C2=0

八 点到平面的距离

d = ∣ A x 0 + B y 0 + C z 0 + D ∣ A 2 + B 2 + C 2 d=\frac{\vert Ax_0+By_0+Cz_0+D \rvert}{\sqrt{A^2+B^2+C^2} } d=A2+B2+C2 Ax0+By0+Cz0+D

在这里插入图片描述

5.2 直线方程

5.2.1 直线的对称式方程

已知直线上一点P0(x0,y0,z0)和方向向量v(l,m,n)。
x − x 0 l = y − y 0 m = z − z 0 n \frac{x-x_0}{l}=\frac{y-y_0}{m}=\frac{z-z_0}{n} lxx0=myy0=nzz0
利用的是:直线上的点P(x,y,z)与P0构成的向量与v平行的原理。

5.2.2 直线的参数式方程

由对称式方程转化而来:
x − x 0 l = y − y 0 m = z − z 0 n = t \frac{x-x_0}{l}=\frac{y-y_0}{m}=\frac{z-z_0}{n}=t lxx0=myy0=nzz0=t
解得:
{ x = x 0 + l t y = y 0 + m t z = z 0 + n t \left\{\begin{aligned} x=x_0+lt \\y=y_0+mt \\z=z_0+nt \end{aligned}\right. x=x0+lty=y0+mtz=z0+nt

5.2.3 直线的一般式方程

给定空间中两个平面的交线:
{ A 1 x + B 1 y + C 1 z + D 1 = 0 A 2 x + B 2 y + C 2 z + D 2 = 0 \left\{\begin{aligned} A_1x+B_1y+C_1z+D_1=0 \\A_2x+B_2y+C_2z+D_2=0 \end{aligned}\right. {A1x+B1y+C1z+D1=0A2x+B2y+C2z+D2=0

5.2.4 特别的例子

将以下直线的参数式方程转化为一般式:
x − 1 2 = y − 2 0 = z − 3 2 \frac{x-1}{2}=\frac{y-2}{0}=\frac{z-3}{2} 2x1=0y2=2z3
转化后:(注意这里分母为0时;分子也是0)
{ x − 1 = z − 3 y − 2 = 0 \left\{\begin{aligned} x-1=z-3 \\y-2=0 \end{aligned}\right. {x1=z3y2=0

5.2.5 一般式转化为参数式

已知直线的一般式方程:
{ x + 2 y + 3 z − 6 = 0 2 x + 3 y − 4 z − 1 = 0 \left\{\begin{aligned} x+2y+3z-6=0 \\2x+3y-4z-1=0 \end{aligned}\right. {x+2y+3z6=02x+3y4z1=0
求直线的参数式和对称式方程。

解:

第一步 必须先找出直线上的一个点的坐标;

因为2个3元方程无法解出所有未知数;因此,我们大胆假设z=0或者x=0或者y=0;将3元方程组变成2元方程组。
{ x + 2 y − 6 = 0 2 x + 3 y − 1 = 0 \left\{\begin{aligned} x+2y-6=0 \\2x+3y-1=0 \end{aligned}\right. {x+2y6=02x+3y1=0
解得:P0(-16,11,0)

第二步 根据两个平面的法向量都⊥直线的方向向量l(l,m,n);得方程组:
{ l + 2 m + 3 n = 0 2 l + 3 m − 4 n = 0 \left\{\begin{aligned} l+2m+3n=0 \\2l+3m-4n=0 \end{aligned}\right. {l+2m+3n=02l+3m4n=0
又是2个3元函数求3个未知数问题;我们可以大胆假设n=1(为什么不是0;因为l/m/n都是分母最好不要为0);也可以把n当、当作常数求解l和m;最终解得一组l(17,-10,1)

第三步 直接写出直线方程:
x + 16 17 = y − 11 − 10 = z 1 \frac{x+16}{17}=\frac{y-11}{-10}=\frac{z}{1} 17x+16=10y11=1z

{ x = − 16 + 17 t y = 11 − 10 t z = t \left\{\begin{aligned} x=-16+17t \\ y=11-10t \\ z=t \end{aligned}\right. x=16+17ty=1110tz=t

5.2.6 两条直线夹角

两直线夹角即为方向向量之间的夹角(取锐角)
cos ⁡ θ = v 1 ⃗ ⋅ v 2 ⃗ ∣ v 1 ⃗ ∣ ∣ v 2 ⃗ ∣ = ∣ l 1 l 2 + m 1 m 2 + n 1 n 2 ∣ l 1 2 + m 1 2 + n 1 2 l 2 2 + m 2 2 + n 2 2 \cos{\theta} = \frac{\vec{v_1} \cdot \vec{v_2}}{\vert \vec{v_1} \rvert \vert \vec{v_2} \rvert } = \frac{\vert l_1l_2+m_1m_2+n_1n_2 \rvert}{\sqrt{l_1^2+m_1^2+n_1^2} \sqrt{l_2^2+m_2^2+n_2^2}} cosθ=v1 v2 v1 v2 =l12+m12+n12 l22+m22+n22 l1l2+m1m2+n1n2

l1//l2充要条件:
l 1 l 2 = m 1 m 2 = n 1 n 2 \frac{l_1}{l_2}=\frac{m_1}{m_2}=\frac{n_1}{n_2} l2l1=m2m1=n2n1
S1⊥S2充要条件:
l 1 l 2 + m 1 m 2 + n 1 n 2 = 0 l_1l_2+m_1m_2+n_1n_2 = 0 l1l2+m1m2+n1n2=0

5.2.7 直线与平面夹角

π/2 减去直线方向向量与平面法向量之间夹角(π/2 - θ)。

6 二次曲面

三元二次方程所表示的曲面统称二次曲面。

判断曲面形状的重要方法是截痕法。

用x、y、z=c的平面去截方程;再利用平面方程代表的集合形状去判断曲面形状。

6.1 球面

( x − x 0 ) 2 + ( y − y 0 ) 2 + ( z − z 0 ) 2 = R 2 (x-x_0)^2+(y-y_0)^2+(z-z_0)^2=R^2 (xx0)2+(yy0)2+zz0)2=R2
球心(x0,y0,z0),半径为R的球面。

6.2 椭球面

( x − x 0 ) 2 a 2 + ( y − y 0 ) 2 b 2 + ( z − z 0 ) 2 c 2 = 1 \frac{(x-x_0)^2}{a^2}+\frac{(y-y_0)^2}{b^2}+\frac{(z-z_0)^2}{c^2}=1 a2(xx0)2+b2(yy0)2+c2(zz0)2=1
球心(x0,y0,z0),半轴长分别为a/2、b/2、c/2的椭球面。

6.3 椭圆抛物面

z = x 2 a 2 + y 2 b 2 ( a > 0 , b > 0 ) z=\frac{x^2}{a^2}+\frac{y^2}{b^2} \\ (a>0,b>0) z=a2x2+b2y2(a>0,b>0)

6.4 椭圆锥面

z 2 = x 2 a 2 + y 2 b 2 ( a > 0 , b > 0 ) z^2=\frac{x^2}{a^2}+\frac{y^2}{b^2} \\ (a>0,b>0) z2=a2x2+b2y2(a>0,b>0)

6.5 单叶双曲面

x 2 a 2 + y 2 b 2 − z 2 c 2 = 1 ( a > 0 , b > 0 , c > 0 ) \frac{x^2}{a^2}+\frac{y^2}{b^2}-\frac{z^2}{c^2}=1 \\ (a>0,b>0,c>0) a2x2+b2y2c2z2=1(a>0,b>0,c>0)

6.6 双叶双曲面

x 2 a 2 + y 2 b 2 − z 2 c 2 = − 1 ( a > 0 , b > 0 , c > 0 ) \frac{x^2}{a^2}+\frac{y^2}{b^2}-\frac{z^2}{c^2}=-1 \\ (a>0,b>0,c>0) a2x2+b2y2c2z2=1(a>0,b>0,c>0)

( x − x 0 ) 2 a 2 + ( y − y 0 ) 2 b 2 + ( z − z 0 ) 2 c 2 = 1 \frac{(x-x_0)^2}{a^2}+\frac{(y-y_0)^2}{b^2}+\frac{(z-z_0)^2}{c^2}=1 a2(xx0)2+b2(yy0)2+c2(zz0)2=1
球心(x0,y0,z0),半轴长分别为a/2、b/2、c/2的椭球面。

6.3 椭圆抛物面

z = x 2 a 2 + y 2 b 2 ( a > 0 , b > 0 ) z=\frac{x^2}{a^2}+\frac{y^2}{b^2} \\ (a>0,b>0) z=a2x2+b2y2(a>0,b>0)

6.4 椭圆锥面

z 2 = x 2 a 2 + y 2 b 2 ( a > 0 , b > 0 ) z^2=\frac{x^2}{a^2}+\frac{y^2}{b^2} \\ (a>0,b>0) z2=a2x2+b2y2(a>0,b>0)

6.5 单叶双曲面

x 2 a 2 + y 2 b 2 − z 2 c 2 = 1 ( a > 0 , b > 0 , c > 0 ) \frac{x^2}{a^2}+\frac{y^2}{b^2}-\frac{z^2}{c^2}=1 \\ (a>0,b>0,c>0) a2x2+b2y2c2z2=1(a>0,b>0,c>0)

6.6 双叶双曲面

x 2 a 2 + y 2 b 2 − z 2 c 2 = − 1 ( a > 0 , b > 0 , c > 0 ) \frac{x^2}{a^2}+\frac{y^2}{b^2}-\frac{z^2}{c^2}=-1 \\ (a>0,b>0,c>0) a2x2+b2y2c2z2=1(a>0,b>0,c>0)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Arthur古德曼

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值