高等数学(下)空间解析几何与向量代数

本文详细探讨了空间解析几何与向量代数的相关概念,包括向量的线性运算,如方向角、方向余弦的定义与计算;数量积、向量积和混合积的性质与应用,如判定两向量垂直、共面和计算四面体体积;解析几何部分阐述了曲面、平面的方程,如球面、椭球面、单叶双曲面和双叶双曲面的方程,以及平面方程和空间直线的各类方程形式。
摘要由CSDN通过智能技术生成

1 向量代数

1.1 向量及其线性运算

1.1.1 方向角与方向余弦

1.1.1.1 定义

非零向量 a⃗  a → 与坐标轴的三个夹角 αβγ α 、 β 、 γ 称为向量 a⃗  a → 的方向角。

cosαcosβcosγ c o s α 、 c o s β 、 c o s γ 称为向量 a⃗  a → 的方向余弦。

1.1.1.2 计算法

以向量 a⃗  a → 的方向余弦为坐标的向量就是与 a⃗  a → 同方向的单位向量 e⃗  e →

cos2α+cos2β+cos2γ=1,ea=(cosα,cosβ,cosγ) c o s 2 α + c o s 2 β + c o s 2 γ = 1 , e a → = ( c o s α , c o s β , c o s γ )

a⃗ =(x,y,z a → = ( x , y , z ) ,则 cosα=xx2+y2+z2,cosβ=yx2+y2+z2,cosγ=zx2+y2+z2 c o s α = x x 2 + y 2 + z 2 , c o s β = y x 2 + y 2 + z 2 , c o s γ = z x 2 + y 2 + z 2

1.2 数量积 向量积 混合积

1.2.1 数量积

1.2.1.1 定义

a⃗ b⃗ =|a⃗ ||b⃗ |cosθ a → ⋅ b → = | a → | ⋅ | b → | ⋅ c o s θ

在空间直角坐标系下,若 a⃗ =(x1,y1,z1),b⃗ =(x2,y2,z2) a → = ( x 1 , y 1 , z 1 ) , b → = ( x 2 , y 2 , z 2 ) ,则 a⃗ b⃗ =x1x2+y1y2+z1z2 a → ⋅ b → = x 1 x 2 + y 1 y 2 + z 1 z 2

1.2.1.2 用数量积表示向量的模

|a⃗ |=a⃗ a⃗  | a → | = a → ⋅ a →

1.2.1.3 数量积判定两向量是否垂直

a⃗ b⃗ a⃗ b⃗ x1x2+y1y2+z1z2=0 a → ⊥ b → ⇔ a → ⋅ b → ⇔ x 1 x 2 + y 1 y 2 + z 1 z 2 = 0

1.2.2 向量积

1.2.2.1 定义

|a⃗ ×b<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值