【概率论与数理统计】第二章 随机变量及其分布(3)

第二章 随机变量及其分布

3 连续型随机变量及其概率密度

3.1 连续型随机变量及其概率密度

前面已经多次提到连续型随机变量,下面给出定义:

定义8:对于随机变量 X X X的分布函数 F ( x ) F(x) F(x),存在非负数 f ( x ) f(x) f(x)使得对于任意实数 x x x有: F ( x ) = ∫ − ∞ x f ( t ) d t F(x) = \int_{-\infty}^{x} f(t)dt F(x)=xf(t)dt;则称 X X X连续型随机变量,并称 f ( x ) f(x) f(x) X X X概率密度函数,简称概率密度

补充高等数学知识: F ( x ) = ∫ − ∞ x f ( t ) d t F(x) = \int_{-\infty}^{x} f(t)dt F(x)=xf(t)dt的计算方法:

1.找到 f ( t ) f(t) f(t)对应的原函数 g ( t ) g(t) g(t),即 g ( t ) 的导函数 g ′ ( t ) = f ( t ) g(t)的导函数g'(t) = f(t) g(t)的导函数g(t)=f(t)

2.根据积分 ∫ − ∞ x \int_{-\infty}^x x给出的积分上限 x x x和积分下限 − ∞ -\infty 带入 g ( t ) g(t) g(t);并计算 g ( x ) − g ( − ∞ ) g(x) - g(-\infty) g(x)g()

3.计算结果即为 F ( x ) F(x) F(x)

上述积分等式,我们通过高等数学的知识,当 f ( x ) f(x) f(x)可积时,连续型随机变量的分布函数 F ( x ) F(x) F(x)是连续函数,进一步,对任意的实数 x x x Δ x > 0 \Delta x \gt 0 Δx>0有: 0 ≤ P { X = x } ≤ P { x − Δ x < X ≤ x } = F ( x ) − F ( x − Δ x ) 0 \le P\{X=x\} \le P\{x - \Delta x \lt X \le x\} = F(x) - F(x-\Delta x) 0P{X=x}P{xΔx<Xx}=F(x)F(xΔx)

由于 F ( x ) F(x) F(x)为连续函数,令 Δ → 0 \Delta \to 0 Δ0,则 P { X = x } = 0 P\{X = x\} = 0 P{X=x}=0;即连续型随机变量得某一指定点取值的概率为0.

有定义8和分布函数的性质可得下列概率密度的性质:

(1) f ( x ) ≥ 0 f(x) \ge 0 f(x)0

(2) ∫ − ∞ + ∞ f ( x ) d x = 1 \int_{-\infty}^{+\infty} f(x)dx = 1 +f(x)dx=1

且满足以上两条性质的函数一定是某个连续型随机变量的概率密度。

(3) P { a < X ≤ b } = F ( b ) − F ( a ) = ∫ a b f ( x ) d x P\{a \lt X \le b\} = F(b) - F(a) = \int_{a}^{b} f(x)dx P{a<Xb}=F(b)F(a)=abf(x)dx

(4) 设 x x x f ( x ) f(x) f(x)的连续点,则 F ′ ( x ) F'(x) F(x)存在,且: F ′ ( x ) = f ( x ) F'(x) = f(x) F(x)=f(x) ★ ★ ★ ★ ★ \bigstar \bigstar \bigstar \bigstar \bigstar ★★★★★

根据积分的几何意义,性质(2)意为介于曲线 y = f ( x ) y=f(x) y=f(x) x x x轴之间的面积为1;

由性质(3)知 X X X落在区间 ( a , b ] (a,b] (a,b]的概率 P { a < x < b } P\{a \lt x \lt b\} P{a<x<b}就是由曲线 y = f ( x ) ,   x = a ,   x = b y = f(x),\ x = a,\ x = b y=f(x), x=a, x=b围成的曲边梯形的面积,如图阴影部分所示:

在这里插入图片描述

由性质(4),在 f ( x ) f(x) f(x)的连续点 x x x处有:

f ( x ) = lim ⁡ Δ x → 0 + F ( x + Δ x ) − F ( x ) Δ x = lim ⁡ Δ x → 0 + P { x < X ≤ x + Δ x } Δ x f(x) = \lim_{\Delta x \to 0^+} \frac{F(x + \Delta x) - F(x)}{\Delta x} = \lim_{\Delta x \to 0^+} \frac{P\{x \lt X \le x+\Delta x\}}{\Delta x} f(x)=limΔx0+ΔxF(x+Δx)F(x)=limΔx0+ΔxP{x<Xx+Δx}

f ( x ) f(x) f(x) X X X落在区间 ( x , x + Δ x ] (x,x+\Delta x] (x,x+Δx]的概率与区间长度的比值。

从这里我们可以看到概率密度的定义与物理学中线密度的定义相似,这就是为什么称 f ( x ) f(x) f(x)为概率密度的原因。

★ ★ ★ ★ ★ \bigstar \bigstar \bigstar \bigstar \bigstar ★★★★★例1:设随机变量 X X X的概率密度为:
f ( x ) = { a x , 0 ≤ x ≤ 1 0 , 其他 f(x) = \begin{cases} ax, & 0 \le x \le 1 \\ 0, & 其他 \end{cases} f(x)={ax,0,0x1其他
求:(1) 常数 a a a; (2) 分布函数 F ( x ) F(x) F(x); (3) P { ∣ X ∣ ≤ 1 2 } P\{|X| \le \frac{1}{2}\} P{X21}

解:(1)由概率密度的性质 ∫ − ∞ + ∞ f ( x ) d x = 1 \int_{-\infty}^{+\infty} f(x)dx = 1 +f(x)dx=1,得:

∫ − ∞ + ∞ f ( x ) d x = ∫ − ∞ 0 0 d x + ∫ 0 1 a x d x + ∫ 1 + ∞ 0 d x = 1 \int_{-\infty}^{+\infty} f(x)dx = \int_{-\infty}^{0} 0dx + \int_{0}^{1} axdx + \int_{1}^{+\infty} 0dx = 1 +f(x)dx=00dx+01axdx+1+0dx=1

$\because \ ax的一个原函数为 \frac{a}{2} x^2 $

∫ 0 1 a x d x = a 2 x 2 ∣ 0 1 = a 2 1 2 − a 2 0 2 = a 2 = 1 \int_{0}^{1} ax dx = \frac{a}{2} x^2 |_{0}^{1} = \frac{a}{2} 1^2 - \frac{a}{2} 0^2 = \frac{a}{2} = 1 01axdx=2ax201=2a122a02=2a=1

∴   a = 2 \therefore \ a = 2  a=2

(2) 当 x < 0 x \lt 0 x<0时, F ( x ) = ∫ − ∞ x f ( t ) d t = 0 ,    ( t ∈ x ) F(x) = \int_{-\infty}^{x} f(t)dt = 0, \ \ (t \in x) F(x)=xf(t)dt=0,  (tx)

0 ≤ x ≤ 1 0 \le x \le 1 0x1时, F ( x ) = ∫ − ∞ x f ( t ) d t = ∫ − ∞ 0 0 d t + ∫ 0 x a t d t = ∫ 0 x 2 t d t = x 2 ∣ 0 x = x 2 F(x) = \int_{-\infty}^{x} f(t)dt = \int_{-\infty}^{0} 0dt + \int_{0}^{x} atdt = \int_{0}^{x} 2tdt = x^2 |_{0}^{x} = x^2 F(x)=xf(t)dt=00dt+0xatdt=0x2tdt=x20x=x2

x > 1 x \gt 1 x>1时, F ( x ) = ∫ − ∞ x f ( t ) d t = ∫ − ∞ 0 0 d t + ∫ 0 1 a t d t + ∫ 1 x 0 d t = ∫ 0 1 2 t d t = t 2 ∣ 0 1 = 1 F(x) = \int_{-\infty}^{x} f(t)dt = \int_{-\infty}^{0} 0dt + \int_{0}^{1} atdt + \int_{1}^{x} 0dt = \int_{0}^{1} 2tdt = t^2 | _{0}^{1} = 1 F(x)=xf(t)dt=00dt+01atdt+1x0dt=012tdt=t201=1

这里教材上的积分下限为 + ∞ +\infty +是错误的!!!

X X X的分布函数为:
F ( x ) = { 0 , x < 0 x 2 , 0 ≤ x ≤ 1 1 , x > 1 F(x)= \begin{cases} 0, & x \lt 0 \\ x^2, & 0 \le x \le 1 \\ 1, & x \gt 1 \end{cases} F(x)= 0,x2,1,x<00x1x>1
(3) P { ∣ X ∣ ≤ 1 2 } = P { − 1 2 ≤ X ≤ 1 2 } = F ( 1 2 ) − F ( − 1 2 ) = 1 4 − 0 = 1 4 P\{|X| \le \frac{1}{2}\} = P\{-\frac{1}{2} \le X \le \frac{1}{2}\} = F(\frac{1}{2}) - F(-\frac{1}{2}) = \frac{1}{4} - 0 = \frac{1}{4} P{X21}=P{21X21}=F(21)F(21)=410=41

或者 P { ∣ X ∣ ≤ 1 2 } = ∫ − 1 2 1 2 f ( x ) d x = ∫ − 1 2 0 f ( x ) d x + ∫ 0 1 2 f ( x ) d x = ∫ − 1 2 0 0 d x + ∫ 0 1 2 a x d x = ∫ 0 1 2 2 x d x = x 2 ∣ 0 1 2 = 1 4 P\{|X| \le \frac{1}{2}\} = \int_{-\frac{1}{2}}^{\frac{1}{2}} f(x)dx = \int_{-\frac{1}{2}}^{0} f(x)dx + \int_{0}^{\frac{1}{2}} f(x)dx = \int_{-\frac{1}{2}}^{0} 0dx + \int_{0}^{\frac{1}{2}} axdx = \int_{0}^{\frac{1}{2}} 2xdx = x^2 |_{0}^{\frac{1}{2}} = \frac{1}{4} P{X21}=2121f(x)dx=210f(x)dx+021f(x)dx=2100dx+021axdx=0212xdx=x2021=41

例2:设随机变量 X X X的概率密度为:
f ( x ) = { x , 0 ≤ x < 1 2 − x , 1 ≤ x < 2 0 , 其他 f(x)= \begin{cases} x, & 0 \le x \lt 1 \\ 2-x, & 1 \le x \lt 2 \\ 0, & 其他 \end{cases} f(x)= x,2x,0,0x<11x<2其他
X X X的分布函数 F ( x ) F(x) F(x)

解:当 x < 0 x \lt 0 x<0时, F ( x ) = ∫ − ∞ x f ( t ) d t = ∫ − ∞ 0 0 d t = 0 ,    t ∈ ( x < 0 , 即其他 ) F(x) = \int_{-\infty}^{x} f(t)dt = \int_{-\infty}^{0} 0dt = 0,\ \ t \in (x \lt 0, 即其他) F(x)=xf(t)dt=00dt=0,  t(x<0,即其他)

0 ≤ x < 1 0 \le x \lt 1 0x<1时, F ( x ) = ∫ − ∞ x f ( t ) d t = ∫ − ∞ 0 0 d t + ∫ 0 x t d t = ∫ 0 x t d t = t 2 2 ∣ 0 x = x 2 2 F(x) = \int_{-\infty}^{x} f(t)dt= \int_{-\infty}^{0} 0dt + \int_{0}^{x} tdt = \int_{0}^{x} tdt = \frac{t^2}{2} | _{0}^{x} = \frac{x^2}{2} F(x)=xf(t)dt=00dt+0xtdt=0xtdt=2t20x=2x2

1 ≤ x < 2 1 \le x \lt 2 1x<2时, F ( x ) = ∫ − ∞ x f ( t ) d t = ∫ − ∞ 0 0 d t + ∫ 0 1 t d t + ∫ 1 x ( 2 − t ) d t = t 2 2 ∣ 0 1 + ( 2 t − 1 2 t 2 ) ∣ 1 x = − 1 2 x 2 + 2 x + 1 F(x) = \int_{-\infty}^{x} f(t)dt = \int_{-\infty}^{0} 0dt + \int_{0}^{1} tdt + \int_{1}^{x} (2-t)dt = \frac{t^2}{2}|_{0}^{1} + (2t-\frac{1}{2} t^2)|_{1}^{x} = -\frac{1}{2} x^2 + 2x + 1 F(x)=xf(t)dt=00dt+01tdt+1x(2t)dt=2t201+(2t21t2)1x=21x2+2x+1

x ≥ 2 x \ge 2 x2时, F ( x ) = ∫ − ∞ x f ( x ) d x = ∫ − ∞ 0 0 d t + ∫ 0 1 t d t + ∫ 1 2 ( 2 − t ) d t + ∫ 2 x 0 d t = 0 + t 2 2 ∣ 0 1 + ( 2 t − 1 2 t 2 ) ∣ 1 2 + 0 = 0 + 1 2 + 1 2 + 0 = 1 F(x) = \int_{-\infty}^{x} f(x)dx = \int_{-\infty}^{0} 0dt + \int_{0}^{1} tdt + \int_{1}^{2} (2-t)dt + \int_{2}^{x} 0dt = 0 + \frac{t^2}{2}|_{0}^{1} + (2t -\frac{1}{2} t^2) | _{1}^{2} + 0 = 0 + \frac{1}{2} + \frac{1}{2} + 0 = 1 F(x)=xf(x)dx=00dt+01tdt+12(2t)dt+2x0dt=0+2t201+(2t21t2)12+0=0+21+21+0=1

X X X的分布函数为:
F ( x ) = { 0 , x < 0 x 2 2 , 0 ≤ x < 1 − 1 2 x 2 + 2 x + 1 , 1 ≤ x < 2 1 , x ≥ 2 F(x)= \begin{cases} 0, & x \lt 0 \\ \frac{x^2}{2}, & 0 \le x \lt 1 \\ -\frac{1}{2}x^2 + 2x + 1, & 1 \le x \lt 2 \\ 1, & x \ge 2 \end{cases} F(x)= 0,2x2,21x2+2x+1,1,x<00x<11x<2x2

再啰嗦一句:无论哪个区间 F ( x ) = ∫ − ∞ x f ( t ) d t F(x) = \int_{-\infty}^{x} f(t)dt F(x)=xf(t)dt;这是定义!!!!

例3:设连续随机变量 X X X的分布函数为:
F ( x ) = { 0 , x ≤ 0 x 2 , 0 < x < 1 1 , x ≥ 1 F(x) = \begin{cases} 0, & x \le 0 \\ x^2, & 0 \lt x \lt 1 \\ 1, & x \ge 1 \end{cases} F(x)= 0,x2,1,x00<x<1x1
求:(1) X X X的概率密度 f ( x ) f(x) f(x); (2) X X X落入 ( 0.3 , 0.7 ) (0.3,0.7) (0.3,0.7)的概率密度。

解:(1) 根据分布函数与概率密度函数的关系知:
f ( x ) = F ′ ( x ) = { 2 x , 0 < x < 1 0 , 其他 f(x) = F'(x) = \begin{cases} 2x, & 0 \lt x \lt 1 \\ 0, & 其他 \end{cases} f(x)=F(x)={2x,0,0<x<1其他
(2) 有两种解法:

P { 0.3 < X < 0.7 } = F ( 0.7 ) − F ( 0.3 ) = 0. 7 2 − 0. 3 2 = 0.4 P\{0.3 \lt X \lt 0.7\} = F(0.7) - F(0.3) = 0.7^2 - 0.3^2 = 0.4 P{0.3<X<0.7}=F(0.7)F(0.3)=0.720.32=0.4

或者:

P { 0.3 < X < 0.7 } = ∫ 0.3 0.7 f ( x ) d x = ∫ 0.3 0.7 2 x d x = x 2 ∣ 0.3 0.7 = 0.4 P\{0.3 \lt X \lt 0.7\} = \int_{0.3}^{0.7} f(x)dx = \int_{0.3}^{0.7} 2xdx = x^2|_{0.3}^{0.7} = 0.4 P{0.3<X<0.7}=0.30.7f(x)dx=0.30.72xdx=x20.30.7=0.4

★ ★ ★ ★ ★ \bigstar \bigstar \bigstar \bigstar \bigstar ★★★★★例4:设某型号电子元件的寿命 X X X(单位:h)具有以下概率密度:
f ( x ) = { 1000 x 2 , x ≥ 1000 0 , 其他 f(x) = \begin{cases} \frac{1000}{x^2}, & x \ge 1000 \\ 0, & 其他 \end{cases} f(x)={x21000,0,x1000其他
现有以下批次的此种元件(元件工作相互独立),问:

(1) 任取一只元件,求其寿命大于1500h的概率?

(2) 任取4只元件,其中恰好有2只元件的寿命大于1500h的概率?

(3) 任取4只元件,其中至少有1只元件的寿命大于1500h的概率?

解:(1) P { X > 1500 } = ∫ 1500 + ∞ 1000 x 2 d x = ( − 1000 x ) ∣ 1500 + ∞ = 2 3 P\{X \gt 1500\} = \int_{1500}^{+\infty} \frac{1000}{x^2} dx = (-\frac{1000}{x})|_{1500}^{+\infty} = \frac{2}{3} P{X>1500}=1500+x21000dx=(x1000)1500+=32

(2) 各元件工作独立,可以看作是进行4重伯努利试验,令 Y Y Y表示"4个元件中寿命大于1500h的元件个数",则 Y ∼ B ( 4 , 2 3 ) Y \sim B(4, \frac{2}{3}) YB(4,32);所有概率 P { Y = 2 } = C 4 2 ( 2 3 ) 2 ( 1 3 ) 2 = 8 27 P\{Y = 2\} = C_4^2 (\frac{2}{3})^2 (\frac{1}{3})^2 = \frac{8}{27} P{Y=2}=C42(32)2(31)2=278

(3) 所求概率为 P { Y ≥ 1 } = 1 − P { Y = 0 } = 1 − C 4 0 ( 2 3 ) 0 ( 1 3 ) 4 = 80 81 P\{Y \ge 1\} = 1 - P\{Y = 0\} = 1 - C_4^0 (\frac{2}{3})^0 (\frac{1}{3})^4 = \frac{80}{81} P{Y1}=1P{Y=0}=1C40(32)0(31)4=8180

3.2 均匀分布与指数分布

最常用的连续型概率分布有:均匀分布、指数分布和正态分布

定义9:若随机变量 X X X的概率密度为:
f ( x ) = { 1 b − a , a ≤ x ≤ b 0 , 其他 f(x) = \begin{cases} \frac{1}{b-a}, & a \le x \le b \\ 0, & 其他 \end{cases} f(x)={ba1,0,axb其他
X X X服从区间 [ a , b ] [a,b] [a,b]上的均匀分布,简记: X ∼ U ( a , b ) X \sim U(a,b) XU(a,b)

容易求得分布函数:
F ( x ) = { 0 , x < a x − a b − a , a ≤ x ≤ b 1 , x > b F(x) = \begin{cases} 0, & x \lt a \\ \frac{x-a}{b-a}, & a \le x \le b \\ 1, & x \gt b \end{cases} F(x)= 0,baxa,1,x<aaxbx>b

我这里还是补充下证明过程:

x < a x \lt a x<a时; F ( x ) = ∫ − ∞ x f ( t ) d t = 0 ∣ − ∞ x = 0 F(x) = \int_{-\infty}^{x} f(t)dt = 0|_{-\infty}^{x} = 0 F(x)=xf(t)dt=0x=0

a ≤ x ≤ b a \le x \le b axb时; F ( x ) = ∫ − ∞ x f ( t ) d t = ∫ − ∞ a 0 d t + ∫ a x ( 1 b − a ) d t = 0 ∣ − ∞ a + 1 b − a t ∣ a x = x b − a − a b − a = x − 1 b − a F(x) = \int_{-\infty}^{x} f(t)dt = \int_{-\infty}^{a} 0dt + \int_{a}^{x} (\frac{1}{b-a})dt = 0|_{-\infty}^{a} + \frac{1}{b-a} t|_{a}^{x} = \frac{x}{b-a} - \frac{a}{b-a} = \frac{x-1}{b-a} F(x)=xf(t)dt=a0dt+ax(ba1)dt=0a+ba1tax=baxbaa=bax1

x > b x \gt b x>b时; F ( x ) = ∫ − ∞ x f ( t ) d t = ∫ − ∞ a 0 d t + ∫ a b ( 1 b − a ) d t + ∫ b x 0 d t = ( 1 b − a t ) ∣ a b = 1 F(x) = \int_{-\infty}^{x}f(t)dt = \int_{-\infty}^{a} 0dt + \int_{a}^{b} (\frac{1}{b-a})dt + \int_{b}^{x} 0dt = (\frac{1}{b-a} t)|_{a}^{b} = 1 F(x)=xf(t)dt=a0dt+ab(ba1)dt+bx0dt=(ba1t)ab=1

均匀分布的概率密度 f ( x ) f(x) f(x)与分布函数 F ( x ) F(x) F(x)的图像如下:

在这里插入图片描述

在这里插入图片描述

均匀分布的概率计算中有一个概率公式: ★ ★ ★ ★ ★ \bigstar \bigstar \bigstar \bigstar \bigstar ★★★★★

X ∼ U ( a , b ) ,    a ≤ c < d ≤ b X \sim U(a,b),\ \ a \le c \lt d \le b XU(a,b),  ac<db [ c , d ] ⊂ [ a , b ] [c,d] \subset [a,b] [c,d][a,b],则: P { c ≤ X ≤ d } = d − c b − a P\{c \le X \le d\} = \frac{d-c}{b-a} P{cXd}=badc

使用这个公式计算均匀分布概率很方便,例如 X ∼ U ( 0 , 3 ) X \sim U(0,3) XU(0,3) P { 1 ≤ X ≤ 2 } = 2 − 1 3 − 0 = 1 3 P\{1 \le X \le 2\} = \frac{2-1}{3-0} = \frac{1}{3} P{1X2}=3021=31

均匀分布可能是实际问题中最常见的了。

★ ★ ★ ★ ★ \bigstar \bigstar \bigstar \bigstar \bigstar ★★★★★

例5:公共汽车站每个5分钟有一辆车通过,乘客再5分钟内任一时刻到达车站是等可能的,求乘客候车时间在1-3分钟内的概率。

解:设 X X X表示乘客的候车时间;则 X ∼ U ( 0 , 5 ) X \sim U(0,5) XU(0,5),其概率密度为:
f ( x ) = { 1 5 , 0 ≤ x ≤ 5 0 , 其他 f(x) = \begin{cases} \frac{1}{5}, & 0 \le x \le 5\\ 0, & 其他 \end{cases} f(x)={51,0,0x5其他
所求概率为: P { 1 ≤ x ≤ 3 } = 3 − 1 5 − 0 = 2 3 P\{1 \le x \le 3\} = \frac{3-1}{5-0} = \frac{2}{3} P{1x3}=5031=32

定义10:若随机变量 X X X的概率密度为:
f ( x ) = { λ e − λ x , x > 0 0 , x ≤ 0 f(x) = \begin{cases} \lambda e^{-\lambda x}, & x \gt 0 \\ 0, & x \le 0 \end{cases} f(x)={λeλx,0,x>0x0
其中 λ > 0 \lambda \gt 0 λ>0是常数,则
X X X服从参数为 λ \lambda λ的指数分布;简记: X ∼ E ( λ ) X \sim E(\lambda) XE(λ)
;其分布函数为:
F ( x ) = { 1 − e − λ x , x > 0 0 , x ≤ 0 F(x) = \begin{cases} 1 - e^{-\lambda x}, & x \gt 0 \\ 0, & x \le 0 \end{cases} F(x)={1eλx,0,x>0x0
f ( x ) f(x) f(x) F ( x ) F(x) F(x)的图像为:

在这里插入图片描述

指数分布常用作各种"寿命"相关的分布,有广泛的应用。

例6:设 X X X服从 λ = 1 \lambda = 1 λ=1的指数分布,求 P { X > 1 } P\{X \gt 1\} P{X>1}

解: X X X的概率密度为为:
f ( x ) = { e − x , x > 0 0 , x ≤ 0 f(x) = \begin{cases} e^{-x}, & x \gt 0 \\ 0, & x \le 0 \end{cases} f(x)={ex,0,x>0x0
方法一: P { X > 1 } = ∫ 1 + ∞ f ( t ) d t P\{X \gt 1\} = \int_{1}^{+\infty}f(t)dt P{X>1}=1+f(t)dt;因为 x > 0 时, f x ( ) = e − x x \gt 0时,fx() = e^{-x} x>0时,fx()=ex,因此:

P { X > 1 } = ∫ 1 + ∞ f ( t ) d t = ∫ 1 + ∞ e − t d t = − e − t ∣ 1 + ∞ = e − 1 P\{X \gt 1\} = \int_{1}^{+\infty}f(t)dt = \int_{1}^{+\infty} e^{-t}dt = -e^{-t} | _{1}^{+\infty} = e^{-1} P{X>1}=1+f(t)dt=1+etdt=et1+=e1

方法二: P { X > 1 } = 1 − P { X ≤ 1 } P\{X \gt 1\} = 1 - P\{X \le 1\} P{X>1}=1P{X1};根据定义7:分布函数的定义得

P { X > 1 } = 1 − P { X ≤ 1 } = 1 − F ( 1 ) = 1 − [ ∫ − ∞ 0 f ( t ) d t + ∫ 0 1 f ( t ) d t ] = 1 − [ 0 + ( − e − t ) ∣ 0 1 ] = 1 − ( − e − 1 − ( − e − 0 ) ) = e − 1 P\{X \gt 1\} = 1 - P\{X \le 1\} = 1 - F(1) = 1 - [ \int_{-\infty}^{0}f(t)dt + \int_{0}^{1}f(t)dt] = 1 - [0 + (-e^{-t}) | _{0}^{1}] = 1 - (-e^{-1} - (-e^{}-0)) = e^{-1} P{X>1}=1P{X1}=1F(1)=1[0f(t)dt+01f(t)dt]=1[0+(et)01]=1(e1(e0))=e1

特别地啰嗦下:

方法一直接通过积分计算 概率密度与区间长度乘积的积分,积分上下限就根据 X X X的取值范围即可。

方法二,辗转通过 概率函数的方法,再通过概率概率函数的性质来计算,那么积分就必须从 − ∞ -\infty 积到边界线 x = 1 x=1 x=1。为什么是积到边界线而不是继续从边界线 x = 1 x=1 x=1继续积到 x → + ∞ x \to +\infty x+呢?因为,继续从边界线 x = 1 x=1 x=1继续积到 x → + ∞ x \to +\infty x+呢有概率密度计算概率函数 F ( x ) F(x) F(x)的计算步骤,而这里已经确定 x = 1 x = 1 x=1了,因此不用再继续积下去。

关于积分上下限的说明

3.3 正态分布

定义11:若随机变量 X X X的概率密度为:
f ( x ) = 1 2 π σ e − ( x − μ ) 2 2 σ 2      ,      − ∞ < x < + ∞ f(x) = \frac{1}{\sqrt{2\pi} \sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}\ \ \ \ ,\ \ \ \ -\infty \lt x \lt +\infty f(x)=2π σ1e2σ2(xμ)2    ,    <x<+
其中 μ ,   σ 2 \mu,\ \sigma^2 μ, σ2为常数, − ∞ < μ < + ∞ ,   μ > 0 -\infty \lt \mu \lt +\infty,\ \mu \gt 0 <μ<+, μ>0,则
X X X服从参数为 μ ,   σ 2 \mu,\ \sigma^2 μ, σ2的正态分布,简记 X ∼ N ( μ , σ 2 ) X \sim N(\mu, \sigma^2) XN(μ,σ2)

f ( x ) f(x) f(x)的图形如下:

在这里插入图片描述

习惯上,称服从正态分布的随机变量为正态随机变量;又称正态分布的概率密度曲线为正态分布曲线,它有以下性质:

(1) 曲线关于之直线 x = μ x = \mu x=μ对称,这表明对于任何 h > 0 h \gt 0 h>0,都有 P { μ − h < X < μ } = P { μ < X < μ + h } P\{\mu-h \lt X \lt \mu\} = P\{\mu \lt X \lt \mu + h\} P{μh<X<μ}=P{μ<X<μ+h}

(2) 当 x = μ x = \mu x=μ时,取最大值 f ( μ ) = 1 2 π σ f(\mu) = \frac{1}{\sqrt{2\pi} \sigma} f(μ)=2π σ1,在 x = μ ± σ x = \mu \pm \sigma x=μ±σ处曲线有拐点;曲线以 x x x轴为渐近线。

(3) 当 σ \sigma σ给定, μ 1 < μ 2 \mu_1 \lt \mu_2 μ1<μ2时;

f 1 ( x ) = 1 2 π σ e − ( x − μ 1 ) 2 2 σ 2      ,      f 2 ( x ) = 1 2 π σ e − ( x − μ 2 ) 2 2 σ 2 f_1(x) = \frac{1}{\sqrt{2\pi} \sigma} e^{-\frac{(x-\mu_1)^2}{2\sigma^2}}\ \ \ \ ,\ \ \ \ f_2(x) = \frac{1}{\sqrt{2\pi} \sigma} e^{-\frac{(x-\mu_2)^2}{2\sigma^2}} f1(x)=2π σ1e2σ2(xμ1)2    ,    f2(x)=2π σ1e2σ2(xμ2)2

其图像为:

在这里插入图片描述

实际上,两条曲线可沿着 x x x轴平移而得,不改变其形状,可见正态分布曲线的位置完全由 μ \mu μ决定, μ \mu μ是正态分布的中心

(4) 当 μ \mu μ给定且 σ 1 < σ 2 \sigma_1 \lt \sigma_2 σ1<σ2时;

f 3 ( x ) = 1 2 π σ 1 e − ( x − μ ) 2 2 σ 1 2      ,      f 4 ( x ) = 1 2 π σ 2 e − ( x − μ ) 2 2 σ 2 2 f_3(x) = \frac{1}{\sqrt{2\pi} \sigma_1} e^{-\frac{(x-\mu)^2}{2\sigma_1^2}}\ \ \ \ ,\ \ \ \ f_4(x) = \frac{1}{\sqrt{2\pi} \sigma_2} e^{-\frac{(x-\mu)^2}{2\sigma_2^2}} f3(x)=2π σ11e2σ12(xμ)2    ,    f4(x)=2π σ21e2σ22(xμ)2

其图像为:

在这里插入图片描述

可见 σ \sigma σ越小,图形越尖, σ \sigma σ越大,图形越平缓;正态分布曲线中 σ \sigma σ的值刻画了正态随机变量取值的分散程度, σ \sigma σ越小,分散程度越小, σ \sigma σ越大,分散程度越大。

X ∼ N ( μ ,   σ 2 ) X \sim N(\mu,\ \sigma^2) XN(μ, σ2),则 X X X的分布函数为: F ( x ) = ∫ − ∞ x 1 2 π σ e − ( x − μ ) 2 2 σ 2 d t F(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi} \sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}dt F(x)=x2π σ1e2σ2(xμ)2dt;它的图形为:

在这里插入图片描述

特别地,当 μ = 0 , σ = 1 \mu = 0, \sigma = 1 μ=0,σ=1时,正态分布称为标准正态分布 N ( 0 ,   1 ) N(0,\ 1) N(0, 1)。为了区别,标准正态分布的密度和分布函数分别记为 φ ( x ) ,   Φ ( x ) \varphi(x),\ \varPhi(x) φ(x), Φ(x),即:

φ ( x ) = 1 2 π e − x 2 2 ,      − ∞ < x < + ∞ \varphi(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}},\ \ \ \ -\infty \lt x \lt +\infty φ(x)=2π 1e2x2,    <x<+

Φ ( x ) = 1 2 π ∫ − ∞ x e − t 2 2 d t ,      − ∞ < x < + ∞ \varPhi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{t^2}{2}}dt,\ \ \ \ -\infty \lt x \lt +\infty Φ(x)=2π 1xe2t2dt,    <x<+

其中, φ ( x ) \varphi(x) φ(x)的图像为:

在这里插入图片描述

显然, φ ( x ) \varphi(x) φ(x)是关于 y y y轴对称的,且在 x = 0 x=0 x=0时取最大值 1 2 π \frac{1}{\sqrt{2\pi}} 2π 1

对于标准正态分布函数 Φ ( x ) \varPhi(x) Φ(x),它有下列性质:

(1) Φ ( − x ) = 1 − Φ ( x ) \varPhi(-x) = 1 - \varPhi(x) Φ(x)=1Φ(x) ;这根据前面的知识时显而易见的;

(2) Φ ( 0 ) = 1 2 \varPhi(0) = \frac{1}{2} Φ(0)=21 Φ ( x ) \varPhi(x) Φ(x)的值可以通过查询标准正态分布表获取;

下列公式揭示了一般正态分布函数 F ( x ) F(x) F(x)与标准正态分布函数 Φ ( x ) \varPhi(x) Φ(x)的关系:

(1) 设 X ∼ N ( μ ,   σ 2 ) X \sim N(\mu,\ \sigma^2) XN(μ, σ2),其分布函数为 F ( x ) F(x) F(x),则: F ( x ) = P { X ≤ x } = Φ ( x − μ σ ) F(x) = P\{X \le x\} = \varPhi(\frac{x-\mu}{\sigma}) F(x)=P{Xx}=Φ(σxμ);证明过程:

因为: F ( x ) = 1 2 π σ ∫ − ∞ x e − ( t − μ ) 2 2 σ 2 d t F(x) = \frac{1}{\sqrt{2\pi} \sigma} \int_{-\infty}^{x} e^{-\frac{(t-\mu)^2}{2\sigma^2}} dt F(x)=2π σ1xe2σ2(tμ)2dt;作为代换,我们令 u = t − μ σ u = \frac{t-\mu}{\sigma} u=σtμ,则 ∵ u ′ = d u d t    ∴ d u = 1 σ d t    ∴ d t = σ d u \because u' = \frac{du}{dt} \ \ \therefore du = \frac{1}{\sigma}dt \ \ \therefore dt = \sigma du u=dtdu  du=σ1dt  dt=σdu

代换后: F ( x ) = 1 2 π σ ∫ − ∞ x − μ σ e − 1 2 u 2 σ d u = Φ ( x − μ σ ) F(x) = \frac{1}{\sqrt{2\pi} \sigma} \int_{-\infty}^{\frac{x-\mu}{\sigma}} e^{-\frac{1}{2} u^2} \sigma du = \varPhi(\frac{x - \mu}{\sigma}) F(x)=2π σ1σxμe21u2σdu=Φ(σxμ) # 注意,这里因为使用了代换量,积分上下界也要跟随变化!!

(2) P { a < x ≤ b } = P { a ≤ x < b } = P { a ≤ x ≤ b } = P { a < x < b } = F ( b ) − F ( a ) = Φ ( b − μ σ ) − Φ ( a − μ σ ) P\{a \lt x \le b\} = P\{a \le x \lt b\} = P\{a \le x \le b\} = P\{a \lt x \lt b\} = F(b) - F(a) = \varPhi(\frac{b-\mu}{\sigma}) - \varPhi(\frac{a-\mu}{\sigma}) P{a<xb}=P{ax<b}=P{axb}=P{a<x<b}=F(b)F(a)=Φ(σbμ)Φ(σaμ)

(3) P { x > a } = P { X ≥ a } = 1 − P { x ≤ a } = 1 − F ( a ) = 1 − Φ ( a − μ σ ) P\{x \gt a\} = P\{ X \ge a\} = 1 - P\{ x \le a\} = 1 - F(a) = 1 - \varPhi(\frac{a - \mu}{\sigma}) P{x>a}=P{Xa}=1P{xa}=1F(a)=1Φ(σaμ)

例7:设 X ∼ N ( 0 , 1 ) X \sim N(0,1) XN(0,1),证明:对于任意的 h > 0 h \gt 0 h>0,有 P { ∣ x ∣ ≤ h } = 2 Φ ( h ) − 1 P\{|x| \le h\} = 2\varPhi(h) - 1 P{xh}=2Φ(h)1

证明: P { ∣ X ∣ ≤ h } = P { − h ≤ X ≤ h } = Φ ( h ) − Φ ( − h ) = Φ ( h ) − [ 1 − Φ ( h ) ] = 2 Φ ( h ) − 1 P\{|X| \le h\} = P\{-h \le X \le h\} = \varPhi(h) - \varPhi(-h) = \varPhi(h) - [1 - \varPhi(h)] = 2\varPhi(h) - 1 P{Xh}=P{hXh}=Φ(h)Φ(h)=Φ(h)[1Φ(h)]=2Φ(h)1

例8:设 X ∼ N ( 0 , 1 ) X \sim N(0,1) XN(0,1)求:

(1) P { X < 2.35 } P\{X \lt 2.35\} P{X<2.35}

(2) P { X < − 3.03 } P\{X \lt -3.03\} P{X<3.03}

(3) P { ∣ X ∣ < 1.54 } P\{|X| \lt 1.54\} P{X<1.54}

解:(1) P { X < 2.35 } = Φ ( 2.35 ) = 0.9906 P\{X \lt 2.35\} = \varPhi(2.35) = 0.9906 P{X<2.35}=Φ(2.35)=0.9906 (直接查表) # 找到行头为2.3,列头为5表格对应的值。

(2) P { X < − 3.03 } = Φ ( − 3.03 ) = 1 − Φ ( 3.03 ) = 1 − 0.9995 = 0.0005 P\{X \lt -3.03\} = \varPhi(-3.03) = 1 - \varPhi(3.03) = 1 - 0.9995 = 0.0005 P{X<3.03}=Φ(3.03)=1Φ(3.03)=10.9995=0.0005 (查表)

(3) P { ∣ X ∣ < 1.54 } = P { − 1.54 < X < 1.54 } = 2 Φ ( 1.54 ) − 1 = 2 × 0.9382 − 1 = 0.8764 P\{|X| \lt 1.54\} = P\{-1.54 \lt X \lt 1.54\} = 2\varPhi(1.54) - 1 = 2 \times 0.9382 - 1 = 0.8764 P{X<1.54}=P{1.54<X<1.54}=2Φ(1.54)1=2×0.93821=0.8764

例9:设 X ∼ N ( 1.5 , 4 ) X \sim N(1.5,4) XN(1.5,4)求:

(1) P { X < 3.5 } P\{X \lt 3.5\} P{X<3.5}

(2) P { 1.5 < X < 3.5 } P\{1.5 \lt X \lt 3.5\} P{1.5<X<3.5}

(3) P { ∣ X ∣ ≥ 3 } P\{|X| \ge 3\} P{X3}

解:由题目知 μ = 1.5 ,   σ = 2 \mu = 1.5, \ \sigma = 2 μ=1.5, σ=2,记 F ( x ) F(x) F(x) X X X的分布函数:

(1) P { X < 3.5 } = F ( 3.5 ) = Φ ( x − μ σ ) = Φ ( 3.5 − 1.5 2 ) = Φ ( 1 ) = 0.8413 P\{X \lt 3.5\} = F(3.5) = \varPhi(\frac{x-\mu}{\sigma}) = \varPhi(\frac{3.5 - 1.5}{2}) = \varPhi(1) = 0.8413 P{X<3.5}=F(3.5)=Φ(σxμ)=Φ(23.51.5)=Φ(1)=0.8413

(2) P { 1.5 < X < 3.5 } = F ( 3.5 ) − F ( 1.5 ) = F ( 1 ) − F ( 0 ) = 0.8413 − 0.5 = 0.3413 P\{1.5 \lt X \lt 3.5\} = F(3.5) - F(1.5) = F(1) - F(0) = 0.8413 - 0.5 = 0.3413 P{1.5<X<3.5}=F(3.5)F(1.5)=F(1)F(0)=0.84130.5=0.3413

(3) P { X ≥ 3 } = P { X ≤ − 3 } + P { X ≥ 3 } = F ( − 3 ) + ( 1 − F ( 3 ) ) P\{X \ge 3\} = P\{ X \le -3\} + P\{X \ge 3\} = F(-3) + (1 - F(3)) P{X3}=P{X3}+P{X3}=F(3)+(1F(3))

= Φ ( − 3 − 1.5 2 ) + 1 − Φ ( 3 − 1.5 2 ) = Φ ( − 2.25 ) − Φ ( 0.75 ) + 1 = 1 − Φ ( 2.25 ) + 1 − v a r P h i ( 0.75 ) = 1 − 0.9878 + 1 − 0.7734 = 0.2388 = \varPhi(\frac{-3-1.5}{2}) + 1 - \varPhi(\frac{3-1.5}{2}) = \varPhi(-2.25) - \varPhi(0.75) + 1 = 1 - \varPhi(2.25) + 1 - varPhi(0.75) = 1-0.9878 + 1-0.7734 = 0.2388 =Φ(231.5)+1Φ(231.5)=Φ(2.25)Φ(0.75)+1=1Φ(2.25)+1varPhi(0.75)=10.9878+10.7734=0.2388

★ ★ ★ \bigstar \bigstar \bigstar ★★★易错点提醒: F ( − x ) F(-x) F(x)不一定等于 1 − F ( 3 ) 1 - F(3) 1F(3);只有在标准正态分布下 Φ ( − x ) = 1 − Φ ( x ) \varPhi(-x) = 1-\varPhi(x) Φ(x)=1Φ(x)才成立!!!

同时,也可以利用 P { ∣ X ∣ ≥ 3 } = 1 − P { ∣ X ∣ < 3 } = 1 − P { − 3 < X < 3 } P\{|X| \ge 3\} = 1 - P\{|X| \lt 3\} = 1 - P\{-3 \lt X \lt 3\} P{X3}=1P{X<3}=1P{3<X<3}来计算!

例10:设 X ∼ N ( μ , σ 2 ) X \sim N(\mu, \sigma^2) XN(μ,σ2) X X X落在区间 [ μ − k σ , μ + k σ ] [\mu -k\sigma, \mu +k\sigma] [μ,μ+]的概率,其中 k = 1 , 2 , . . . k=1,2,... k=1,2,...

解: P { μ − k σ ≤ X μ + k σ } = F ( μ + k σ ) − F ( μ − k σ ) = Φ ( ( μ + k σ ) − μ σ ) − Φ ( ( μ − k σ ) − μ σ ) = Φ ( k ) − Φ ( − k ) = 2 Φ ( k ) − 1 P\{\mu-k\sigma \le X \mu+k\sigma\} = F(\mu+k\sigma) - F(\mu-k\sigma) = \varPhi(\frac{(\mu + k\sigma)-\mu}{\sigma}) - \varPhi(\frac{(\mu - k\sigma)-\mu}{\sigma}) = \varPhi(k) - \varPhi(-k) = 2\varPhi(k) - 1 P{μXμ+}=F(μ+)F(μ)=Φ(σ(μ+)μ)Φ(σ(μ)μ)=Φ(k)Φ(k)=2Φ(k)1 ;则:

k = 1 ;    P { μ − σ ≤ X ≤ μ + σ } = 2 Φ ( 1 ) − 1 = 0.6826 k=1;\ \ P\{\mu-\sigma \le X \le \mu+\sigma\} = 2\varPhi(1) - 1 = 0.6826 k=1;  P{μσXμ+σ}=2Φ(1)1=0.6826

k = 2 ;    P { μ − 2 σ ≤ X ≤ μ + 2 σ } = 2 Φ ( 2 ) − 1 = 0.9544 k=2;\ \ P\{\mu-2\sigma \le X \le \mu+2\sigma\} = 2\varPhi(2) - 1 = 0.9544 k=2;  P{μ2σXμ+2σ}=2Φ(2)1=0.9544

k = 3 ;    P { μ − 3 σ ≤ X ≤ μ + 3 σ } = 2 Φ ( 3 ) − 1 = 0.9973 k=3;\ \ P\{\mu-3\sigma \le X \le \mu+3\sigma\} = 2\varPhi(3) - 1 = 0.9973 k=3;  P{μ3σXμ+3σ}=2Φ(3)1=0.9973

★ ★ ★ \bigstar \bigstar \bigstar ★★★由此可以看出:尽管正态随机变量取值范围为 ( − ∞ , + ∞ ) (-\infty,+\infty) (,+),但他的值落在 [ μ − 3 σ , μ + 3 σ ] [\mu-3\sigma,\mu+3\sigma] [μ3σ,μ+3σ]的概率为 0.9973 0.9973 0.9973,很接近 100 % 100\% 100%这个性质被称为正态分布的 3 σ 3\sigma 3σ规则

大家应该都听过六西格玛质量管理模式,实际上也与此有关,大家有兴趣可以算算 6 σ : [ μ − 3 σ , μ + 3 σ ] 6\sigma :[\mu-3\sigma,\mu+3\sigma] 6σ[μ3σ,μ+3σ]的概率。

定义12: X ∼ N ( 0 , 1 ) X \sim N(0,1) XN(0,1),若 μ α \mu_{\alpha} μα满足条件: P { X > μ α } = α ,    0 < α < 1 P\{X \gt \mu_{\alpha}\} = \alpha, \ \ 0 \lt \alpha \lt 1 P{X>μα}=α,  0<α<1;则称点 μ α \mu_{\alpha} μα为标准正态分布的上侧 α \alpha α分位数,简称 α \alpha α分位数。见图:

在这里插入图片描述

常见的上侧分位数:

μ 0.1 = 1.282 ,      μ 0.05 = 1.645 ,      μ 0 . 025 = 1.960 \mu_{0.1} = 1.282,\ \ \ \ \mu_{0.05} = 1.645,\ \ \ \ \mu_0.025 = 1.960 μ0.1=1.282,    μ0.05=1.645,    μ0.025=1.960

μ 0.01 = 2.326 ,      μ 0.005 = 2.567 \mu_{0.01} = 2.326,\ \ \ \ \mu_{0.005} = 2.567 μ0.01=2.326,    μ0.005=2.567

μ 0.0001 = 3.090 \mu_{0.0001} = 3.090 μ0.0001=3.090

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Arthur古德曼

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值