第二章 随机变量及其分布
3 连续型随机变量及其概率密度
3.1 连续型随机变量及其概率密度
前面已经多次提到连续型随机变量,下面给出定义:
定义8:对于随机变量 X X X的分布函数 F ( x ) F(x) F(x),存在非负数 f ( x ) f(x) f(x)使得对于任意实数 x x x有: F ( x ) = ∫ − ∞ x f ( t ) d t F(x) = \int_{-\infty}^{x} f(t)dt F(x)=∫−∞xf(t)dt;则称 X X X为连续型随机变量,并称 f ( x ) f(x) f(x)是 X X X的概率密度函数,简称概率密度。
补充高等数学知识: F ( x ) = ∫ − ∞ x f ( t ) d t F(x) = \int_{-\infty}^{x} f(t)dt F(x)=∫−∞xf(t)dt的计算方法:
1.找到 f ( t ) f(t) f(t)对应的原函数 g ( t ) g(t) g(t),即 g ( t ) 的导函数 g ′ ( t ) = f ( t ) g(t)的导函数g'(t) = f(t) g(t)的导函数g′(t)=f(t);
2.根据积分 ∫ − ∞ x \int_{-\infty}^x ∫−∞x给出的积分上限 x x x和积分下限 − ∞ -\infty −∞带入 g ( t ) g(t) g(t);并计算 g ( x ) − g ( − ∞ ) g(x) - g(-\infty) g(x)−g(−∞);
3.计算结果即为 F ( x ) F(x) F(x)。
上述积分等式,我们通过高等数学的知识,当 f ( x ) f(x) f(x)可积时,连续型随机变量的分布函数 F ( x ) F(x) F(x)是连续函数,进一步,对任意的实数 x x x, Δ x > 0 \Delta x \gt 0 Δx>0有: 0 ≤ P { X = x } ≤ P { x − Δ x < X ≤ x } = F ( x ) − F ( x − Δ x ) 0 \le P\{X=x\} \le P\{x - \Delta x \lt X \le x\} = F(x) - F(x-\Delta x) 0≤P{X=x}≤P{x−Δx<X≤x}=F(x)−F(x−Δx)
由于 F ( x ) F(x) F(x)为连续函数,令 Δ → 0 \Delta \to 0 Δ→0,则 P { X = x } = 0 P\{X = x\} = 0 P{X=x}=0;即连续型随机变量得某一指定点取值的概率为0.
有定义8和分布函数的性质可得下列概率密度的性质:
(1) f ( x ) ≥ 0 f(x) \ge 0 f(x)≥0
(2) ∫ − ∞ + ∞ f ( x ) d x = 1 \int_{-\infty}^{+\infty} f(x)dx = 1 ∫−∞+∞f(x)dx=1
且满足以上两条性质的函数一定是某个连续型随机变量的概率密度。
(3) P { a < X ≤ b } = F ( b ) − F ( a ) = ∫ a b f ( x ) d x P\{a \lt X \le b\} = F(b) - F(a) = \int_{a}^{b} f(x)dx P{a<X≤b}=F(b)−F(a)=∫abf(x)dx
(4) 设 x x x是 f ( x ) f(x) f(x)的连续点,则 F ′ ( x ) F'(x) F′(x)存在,且: F ′ ( x ) = f ( x ) F'(x) = f(x) F′(x)=f(x) ★ ★ ★ ★ ★ \bigstar \bigstar \bigstar \bigstar \bigstar ★★★★★
根据积分的几何意义,性质(2)意为介于曲线 y = f ( x ) y=f(x) y=f(x)与 x x x轴之间的面积为1;
由性质(3)知 X X X落在区间 ( a , b ] (a,b] (a,b]的概率 P { a < x < b } P\{a \lt x \lt b\} P{a<x<b}就是由曲线 y = f ( x ) , x = a , x = b y = f(x),\ x = a,\ x = b y=f(x), x=a, x=b围成的曲边梯形的面积,如图阴影部分所示:
由性质(4),在 f ( x ) f(x) f(x)的连续点 x x x处有:
f ( x ) = lim Δ x → 0 + F ( x + Δ x ) − F ( x ) Δ x = lim Δ x → 0 + P { x < X ≤ x + Δ x } Δ x f(x) = \lim_{\Delta x \to 0^+} \frac{F(x + \Delta x) - F(x)}{\Delta x} = \lim_{\Delta x \to 0^+} \frac{P\{x \lt X \le x+\Delta x\}}{\Delta x} f(x)=limΔx→0+ΔxF(x+Δx)−F(x)=limΔx→0+ΔxP{x<X≤x+Δx}
即 f ( x ) f(x) f(x)为 X X X落在区间 ( x , x + Δ x ] (x,x+\Delta x] (x,x+Δx]的概率与区间长度的比值。
从这里我们可以看到概率密度的定义与物理学中线密度的定义相似,这就是为什么称 f ( x ) f(x) f(x)为概率密度的原因。
★
★
★
★
★
\bigstar \bigstar \bigstar \bigstar \bigstar
★★★★★例1:设随机变量
X
X
X的概率密度为:
f
(
x
)
=
{
a
x
,
0
≤
x
≤
1
0
,
其他
f(x) = \begin{cases} ax, & 0 \le x \le 1 \\ 0, & 其他 \end{cases}
f(x)={ax,0,0≤x≤1其他
求:(1) 常数
a
a
a; (2) 分布函数
F
(
x
)
F(x)
F(x); (3)
P
{
∣
X
∣
≤
1
2
}
P\{|X| \le \frac{1}{2}\}
P{∣X∣≤21}。
解:(1)由概率密度的性质 ∫ − ∞ + ∞ f ( x ) d x = 1 \int_{-\infty}^{+\infty} f(x)dx = 1 ∫−∞+∞f(x)dx=1,得:
∫ − ∞ + ∞ f ( x ) d x = ∫ − ∞ 0 0 d x + ∫ 0 1 a x d x + ∫ 1 + ∞ 0 d x = 1 \int_{-\infty}^{+\infty} f(x)dx = \int_{-\infty}^{0} 0dx + \int_{0}^{1} axdx + \int_{1}^{+\infty} 0dx = 1 ∫−∞+∞f(x)dx=∫−∞00dx+∫01axdx+∫1+∞0dx=1
$\because \ ax的一个原函数为 \frac{a}{2} x^2 $
即 ∫ 0 1 a x d x = a 2 x 2 ∣ 0 1 = a 2 1 2 − a 2 0 2 = a 2 = 1 \int_{0}^{1} ax dx = \frac{a}{2} x^2 |_{0}^{1} = \frac{a}{2} 1^2 - \frac{a}{2} 0^2 = \frac{a}{2} = 1 ∫01axdx=2ax2∣01=2a12−2a02=2a=1
∴ a = 2 \therefore \ a = 2 ∴ a=2
(2) 当 x < 0 x \lt 0 x<0时, F ( x ) = ∫ − ∞ x f ( t ) d t = 0 , ( t ∈ x ) F(x) = \int_{-\infty}^{x} f(t)dt = 0, \ \ (t \in x) F(x)=∫−∞xf(t)dt=0, (t∈x)
当 0 ≤ x ≤ 1 0 \le x \le 1 0≤x≤1时, F ( x ) = ∫ − ∞ x f ( t ) d t = ∫ − ∞ 0 0 d t + ∫ 0 x a t d t = ∫ 0 x 2 t d t = x 2 ∣ 0 x = x 2 F(x) = \int_{-\infty}^{x} f(t)dt = \int_{-\infty}^{0} 0dt + \int_{0}^{x} atdt = \int_{0}^{x} 2tdt = x^2 |_{0}^{x} = x^2 F(x)=∫−∞xf(t)dt=∫−∞00dt+∫0xatdt=∫0x2tdt=x2∣0x=x2
当 x > 1 x \gt 1 x>1时, F ( x ) = ∫ − ∞ x f ( t ) d t = ∫ − ∞ 0 0 d t + ∫ 0 1 a t d t + ∫ 1 x 0 d t = ∫ 0 1 2 t d t = t 2 ∣ 0 1 = 1 F(x) = \int_{-\infty}^{x} f(t)dt = \int_{-\infty}^{0} 0dt + \int_{0}^{1} atdt + \int_{1}^{x} 0dt = \int_{0}^{1} 2tdt = t^2 | _{0}^{1} = 1 F(x)=∫−∞xf(t)dt=∫−∞00dt+∫01atdt+∫1x0dt=∫012tdt=t2∣01=1
这里教材上的积分下限为 + ∞ +\infty +∞是错误的!!!
即
X
X
X的分布函数为:
F
(
x
)
=
{
0
,
x
<
0
x
2
,
0
≤
x
≤
1
1
,
x
>
1
F(x)= \begin{cases} 0, & x \lt 0 \\ x^2, & 0 \le x \le 1 \\ 1, & x \gt 1 \end{cases}
F(x)=⎩
⎨
⎧0,x2,1,x<00≤x≤1x>1
(3)
P
{
∣
X
∣
≤
1
2
}
=
P
{
−
1
2
≤
X
≤
1
2
}
=
F
(
1
2
)
−
F
(
−
1
2
)
=
1
4
−
0
=
1
4
P\{|X| \le \frac{1}{2}\} = P\{-\frac{1}{2} \le X \le \frac{1}{2}\} = F(\frac{1}{2}) - F(-\frac{1}{2}) = \frac{1}{4} - 0 = \frac{1}{4}
P{∣X∣≤21}=P{−21≤X≤21}=F(21)−F(−21)=41−0=41
或者 P { ∣ X ∣ ≤ 1 2 } = ∫ − 1 2 1 2 f ( x ) d x = ∫ − 1 2 0 f ( x ) d x + ∫ 0 1 2 f ( x ) d x = ∫ − 1 2 0 0 d x + ∫ 0 1 2 a x d x = ∫ 0 1 2 2 x d x = x 2 ∣ 0 1 2 = 1 4 P\{|X| \le \frac{1}{2}\} = \int_{-\frac{1}{2}}^{\frac{1}{2}} f(x)dx = \int_{-\frac{1}{2}}^{0} f(x)dx + \int_{0}^{\frac{1}{2}} f(x)dx = \int_{-\frac{1}{2}}^{0} 0dx + \int_{0}^{\frac{1}{2}} axdx = \int_{0}^{\frac{1}{2}} 2xdx = x^2 |_{0}^{\frac{1}{2}} = \frac{1}{4} P{∣X∣≤21}=∫−2121f(x)dx=∫−210f(x)dx+∫021f(x)dx=∫−2100dx+∫021axdx=∫0212xdx=x2∣021=41
例2:设随机变量
X
X
X的概率密度为:
f
(
x
)
=
{
x
,
0
≤
x
<
1
2
−
x
,
1
≤
x
<
2
0
,
其他
f(x)= \begin{cases} x, & 0 \le x \lt 1 \\ 2-x, & 1 \le x \lt 2 \\ 0, & 其他 \end{cases}
f(x)=⎩
⎨
⎧x,2−x,0,0≤x<11≤x<2其他
求
X
X
X的分布函数
F
(
x
)
F(x)
F(x)。
解:当 x < 0 x \lt 0 x<0时, F ( x ) = ∫ − ∞ x f ( t ) d t = ∫ − ∞ 0 0 d t = 0 , t ∈ ( x < 0 , 即其他 ) F(x) = \int_{-\infty}^{x} f(t)dt = \int_{-\infty}^{0} 0dt = 0,\ \ t \in (x \lt 0, 即其他) F(x)=∫−∞xf(t)dt=∫−∞00dt=0, t∈(x<0,即其他)
当 0 ≤ x < 1 0 \le x \lt 1 0≤x<1时, F ( x ) = ∫ − ∞ x f ( t ) d t = ∫ − ∞ 0 0 d t + ∫ 0 x t d t = ∫ 0 x t d t = t 2 2 ∣ 0 x = x 2 2 F(x) = \int_{-\infty}^{x} f(t)dt= \int_{-\infty}^{0} 0dt + \int_{0}^{x} tdt = \int_{0}^{x} tdt = \frac{t^2}{2} | _{0}^{x} = \frac{x^2}{2} F(x)=∫−∞xf(t)dt=∫−∞00dt+∫0xtdt=∫0xtdt=2t2∣0x=2x2
当 1 ≤ x < 2 1 \le x \lt 2 1≤x<2时, F ( x ) = ∫ − ∞ x f ( t ) d t = ∫ − ∞ 0 0 d t + ∫ 0 1 t d t + ∫ 1 x ( 2 − t ) d t = t 2 2 ∣ 0 1 + ( 2 t − 1 2 t 2 ) ∣ 1 x = − 1 2 x 2 + 2 x + 1 F(x) = \int_{-\infty}^{x} f(t)dt = \int_{-\infty}^{0} 0dt + \int_{0}^{1} tdt + \int_{1}^{x} (2-t)dt = \frac{t^2}{2}|_{0}^{1} + (2t-\frac{1}{2} t^2)|_{1}^{x} = -\frac{1}{2} x^2 + 2x + 1 F(x)=∫−∞xf(t)dt=∫−∞00dt+∫01tdt+∫1x(2−t)dt=2t2∣01+(2t−21t2)∣1x=−21x2+2x+1
当 x ≥ 2 x \ge 2 x≥2时, F ( x ) = ∫ − ∞ x f ( x ) d x = ∫ − ∞ 0 0 d t + ∫ 0 1 t d t + ∫ 1 2 ( 2 − t ) d t + ∫ 2 x 0 d t = 0 + t 2 2 ∣ 0 1 + ( 2 t − 1 2 t 2 ) ∣ 1 2 + 0 = 0 + 1 2 + 1 2 + 0 = 1 F(x) = \int_{-\infty}^{x} f(x)dx = \int_{-\infty}^{0} 0dt + \int_{0}^{1} tdt + \int_{1}^{2} (2-t)dt + \int_{2}^{x} 0dt = 0 + \frac{t^2}{2}|_{0}^{1} + (2t -\frac{1}{2} t^2) | _{1}^{2} + 0 = 0 + \frac{1}{2} + \frac{1}{2} + 0 = 1 F(x)=∫−∞xf(x)dx=∫−∞00dt+∫01tdt+∫12(2−t)dt+∫2x0dt=0+2t2∣01+(2t−21t2)∣12+0=0+21+21+0=1
即
X
X
X的分布函数为:
F
(
x
)
=
{
0
,
x
<
0
x
2
2
,
0
≤
x
<
1
−
1
2
x
2
+
2
x
+
1
,
1
≤
x
<
2
1
,
x
≥
2
F(x)= \begin{cases} 0, & x \lt 0 \\ \frac{x^2}{2}, & 0 \le x \lt 1 \\ -\frac{1}{2}x^2 + 2x + 1, & 1 \le x \lt 2 \\ 1, & x \ge 2 \end{cases}
F(x)=⎩
⎨
⎧0,2x2,−21x2+2x+1,1,x<00≤x<11≤x<2x≥2
再啰嗦一句:无论哪个区间 F ( x ) = ∫ − ∞ x f ( t ) d t F(x) = \int_{-\infty}^{x} f(t)dt F(x)=∫−∞xf(t)dt;这是定义!!!!
例3:设连续随机变量
X
X
X的分布函数为:
F
(
x
)
=
{
0
,
x
≤
0
x
2
,
0
<
x
<
1
1
,
x
≥
1
F(x) = \begin{cases} 0, & x \le 0 \\ x^2, & 0 \lt x \lt 1 \\ 1, & x \ge 1 \end{cases}
F(x)=⎩
⎨
⎧0,x2,1,x≤00<x<1x≥1
求:(1)
X
X
X的概率密度
f
(
x
)
f(x)
f(x); (2)
X
X
X落入
(
0.3
,
0.7
)
(0.3,0.7)
(0.3,0.7)的概率密度。
解:(1) 根据分布函数与概率密度函数的关系知:
f
(
x
)
=
F
′
(
x
)
=
{
2
x
,
0
<
x
<
1
0
,
其他
f(x) = F'(x) = \begin{cases} 2x, & 0 \lt x \lt 1 \\ 0, & 其他 \end{cases}
f(x)=F′(x)={2x,0,0<x<1其他
(2) 有两种解法:
P { 0.3 < X < 0.7 } = F ( 0.7 ) − F ( 0.3 ) = 0. 7 2 − 0. 3 2 = 0.4 P\{0.3 \lt X \lt 0.7\} = F(0.7) - F(0.3) = 0.7^2 - 0.3^2 = 0.4 P{0.3<X<0.7}=F(0.7)−F(0.3)=0.72−0.32=0.4
或者:
P { 0.3 < X < 0.7 } = ∫ 0.3 0.7 f ( x ) d x = ∫ 0.3 0.7 2 x d x = x 2 ∣ 0.3 0.7 = 0.4 P\{0.3 \lt X \lt 0.7\} = \int_{0.3}^{0.7} f(x)dx = \int_{0.3}^{0.7} 2xdx = x^2|_{0.3}^{0.7} = 0.4 P{0.3<X<0.7}=∫0.30.7f(x)dx=∫0.30.72xdx=x2∣0.30.7=0.4
★
★
★
★
★
\bigstar \bigstar \bigstar \bigstar \bigstar
★★★★★例4:设某型号电子元件的寿命
X
X
X(单位:h)具有以下概率密度:
f
(
x
)
=
{
1000
x
2
,
x
≥
1000
0
,
其他
f(x) = \begin{cases} \frac{1000}{x^2}, & x \ge 1000 \\ 0, & 其他 \end{cases}
f(x)={x21000,0,x≥1000其他
现有以下批次的此种元件(元件工作相互独立),问:
(1) 任取一只元件,求其寿命大于1500h的概率?
(2) 任取4只元件,其中恰好有2只元件的寿命大于1500h的概率?
(3) 任取4只元件,其中至少有1只元件的寿命大于1500h的概率?
解:(1) P { X > 1500 } = ∫ 1500 + ∞ 1000 x 2 d x = ( − 1000 x ) ∣ 1500 + ∞ = 2 3 P\{X \gt 1500\} = \int_{1500}^{+\infty} \frac{1000}{x^2} dx = (-\frac{1000}{x})|_{1500}^{+\infty} = \frac{2}{3} P{X>1500}=∫1500+∞x21000dx=(−x1000)∣1500+∞=32
(2) 各元件工作独立,可以看作是进行4重伯努利试验,令 Y Y Y表示"4个元件中寿命大于1500h的元件个数",则 Y ∼ B ( 4 , 2 3 ) Y \sim B(4, \frac{2}{3}) Y∼B(4,32);所有概率 P { Y = 2 } = C 4 2 ( 2 3 ) 2 ( 1 3 ) 2 = 8 27 P\{Y = 2\} = C_4^2 (\frac{2}{3})^2 (\frac{1}{3})^2 = \frac{8}{27} P{Y=2}=C42(32)2(31)2=278
(3) 所求概率为 P { Y ≥ 1 } = 1 − P { Y = 0 } = 1 − C 4 0 ( 2 3 ) 0 ( 1 3 ) 4 = 80 81 P\{Y \ge 1\} = 1 - P\{Y = 0\} = 1 - C_4^0 (\frac{2}{3})^0 (\frac{1}{3})^4 = \frac{80}{81} P{Y≥1}=1−P{Y=0}=1−C40(32)0(31)4=8180
3.2 均匀分布与指数分布
最常用的连续型概率分布有:均匀分布、指数分布和正态分布。
定义9:若随机变量
X
X
X的概率密度为:
f
(
x
)
=
{
1
b
−
a
,
a
≤
x
≤
b
0
,
其他
f(x) = \begin{cases} \frac{1}{b-a}, & a \le x \le b \\ 0, & 其他 \end{cases}
f(x)={b−a1,0,a≤x≤b其他
则称
X
X
X服从区间
[
a
,
b
]
[a,b]
[a,b]上的均匀分布,简记:
X
∼
U
(
a
,
b
)
X \sim U(a,b)
X∼U(a,b)。
容易求得分布函数:
F
(
x
)
=
{
0
,
x
<
a
x
−
a
b
−
a
,
a
≤
x
≤
b
1
,
x
>
b
F(x) = \begin{cases} 0, & x \lt a \\ \frac{x-a}{b-a}, & a \le x \le b \\ 1, & x \gt b \end{cases}
F(x)=⎩
⎨
⎧0,b−ax−a,1,x<aa≤x≤bx>b
我这里还是补充下证明过程:
当 x < a x \lt a x<a时; F ( x ) = ∫ − ∞ x f ( t ) d t = 0 ∣ − ∞ x = 0 F(x) = \int_{-\infty}^{x} f(t)dt = 0|_{-\infty}^{x} = 0 F(x)=∫−∞xf(t)dt=0∣−∞x=0 ;
当 a ≤ x ≤ b a \le x \le b a≤x≤b时; F ( x ) = ∫ − ∞ x f ( t ) d t = ∫ − ∞ a 0 d t + ∫ a x ( 1 b − a ) d t = 0 ∣ − ∞ a + 1 b − a t ∣ a x = x b − a − a b − a = x − 1 b − a F(x) = \int_{-\infty}^{x} f(t)dt = \int_{-\infty}^{a} 0dt + \int_{a}^{x} (\frac{1}{b-a})dt = 0|_{-\infty}^{a} + \frac{1}{b-a} t|_{a}^{x} = \frac{x}{b-a} - \frac{a}{b-a} = \frac{x-1}{b-a} F(x)=∫−∞xf(t)dt=∫−∞a0dt+∫ax(b−a1)dt=0∣−∞a+b−a1t∣ax=b−ax−b−aa=b−ax−1
当 x > b x \gt b x>b时; F ( x ) = ∫ − ∞ x f ( t ) d t = ∫ − ∞ a 0 d t + ∫ a b ( 1 b − a ) d t + ∫ b x 0 d t = ( 1 b − a t ) ∣ a b = 1 F(x) = \int_{-\infty}^{x}f(t)dt = \int_{-\infty}^{a} 0dt + \int_{a}^{b} (\frac{1}{b-a})dt + \int_{b}^{x} 0dt = (\frac{1}{b-a} t)|_{a}^{b} = 1 F(x)=∫−∞xf(t)dt=∫−∞a0dt+∫ab(b−a1)dt+∫bx0dt=(b−a1t)∣ab=1
均匀分布的概率密度 f ( x ) f(x) f(x)与分布函数 F ( x ) F(x) F(x)的图像如下:
均匀分布的概率计算中有一个概率公式: ★ ★ ★ ★ ★ \bigstar \bigstar \bigstar \bigstar \bigstar ★★★★★
设 X ∼ U ( a , b ) , a ≤ c < d ≤ b X \sim U(a,b),\ \ a \le c \lt d \le b X∼U(a,b), a≤c<d≤b即 [ c , d ] ⊂ [ a , b ] [c,d] \subset [a,b] [c,d]⊂[a,b],则: P { c ≤ X ≤ d } = d − c b − a P\{c \le X \le d\} = \frac{d-c}{b-a} P{c≤X≤d}=b−ad−c。
使用这个公式计算均匀分布概率很方便,例如 X ∼ U ( 0 , 3 ) X \sim U(0,3) X∼U(0,3)则 P { 1 ≤ X ≤ 2 } = 2 − 1 3 − 0 = 1 3 P\{1 \le X \le 2\} = \frac{2-1}{3-0} = \frac{1}{3} P{1≤X≤2}=3−02−1=31
均匀分布可能是实际问题中最常见的了。
★ ★ ★ ★ ★ \bigstar \bigstar \bigstar \bigstar \bigstar ★★★★★
例5:公共汽车站每个5分钟有一辆车通过,乘客再5分钟内任一时刻到达车站是等可能的,求乘客候车时间在1-3分钟内的概率。
解:设
X
X
X表示乘客的候车时间;则
X
∼
U
(
0
,
5
)
X \sim U(0,5)
X∼U(0,5),其概率密度为:
f
(
x
)
=
{
1
5
,
0
≤
x
≤
5
0
,
其他
f(x) = \begin{cases} \frac{1}{5}, & 0 \le x \le 5\\ 0, & 其他 \end{cases}
f(x)={51,0,0≤x≤5其他
所求概率为:
P
{
1
≤
x
≤
3
}
=
3
−
1
5
−
0
=
2
3
P\{1 \le x \le 3\} = \frac{3-1}{5-0} = \frac{2}{3}
P{1≤x≤3}=5−03−1=32
定义10:若随机变量
X
X
X的概率密度为:
f
(
x
)
=
{
λ
e
−
λ
x
,
x
>
0
0
,
x
≤
0
f(x) = \begin{cases} \lambda e^{-\lambda x}, & x \gt 0 \\ 0, & x \le 0 \end{cases}
f(x)={λe−λx,0,x>0x≤0
其中
λ
>
0
\lambda \gt 0
λ>0是常数,则称
X
X
X服从参数为
λ
\lambda
λ的指数分布;简记:
X
∼
E
(
λ
)
X \sim E(\lambda)
X∼E(λ);其分布函数为:
F
(
x
)
=
{
1
−
e
−
λ
x
,
x
>
0
0
,
x
≤
0
F(x) = \begin{cases} 1 - e^{-\lambda x}, & x \gt 0 \\ 0, & x \le 0 \end{cases}
F(x)={1−e−λx,0,x>0x≤0
f
(
x
)
f(x)
f(x)与
F
(
x
)
F(x)
F(x)的图像为:
指数分布常用作各种"寿命"相关的分布,有广泛的应用。
例6:设 X X X服从 λ = 1 \lambda = 1 λ=1的指数分布,求 P { X > 1 } P\{X \gt 1\} P{X>1}。
解:
X
X
X的概率密度为为:
f
(
x
)
=
{
e
−
x
,
x
>
0
0
,
x
≤
0
f(x) = \begin{cases} e^{-x}, & x \gt 0 \\ 0, & x \le 0 \end{cases}
f(x)={e−x,0,x>0x≤0
方法一:
P
{
X
>
1
}
=
∫
1
+
∞
f
(
t
)
d
t
P\{X \gt 1\} = \int_{1}^{+\infty}f(t)dt
P{X>1}=∫1+∞f(t)dt;因为
x
>
0
时,
f
x
(
)
=
e
−
x
x \gt 0时,fx() = e^{-x}
x>0时,fx()=e−x,因此:
P { X > 1 } = ∫ 1 + ∞ f ( t ) d t = ∫ 1 + ∞ e − t d t = − e − t ∣ 1 + ∞ = e − 1 P\{X \gt 1\} = \int_{1}^{+\infty}f(t)dt = \int_{1}^{+\infty} e^{-t}dt = -e^{-t} | _{1}^{+\infty} = e^{-1} P{X>1}=∫1+∞f(t)dt=∫1+∞e−tdt=−e−t∣1+∞=e−1。
方法二: P { X > 1 } = 1 − P { X ≤ 1 } P\{X \gt 1\} = 1 - P\{X \le 1\} P{X>1}=1−P{X≤1};根据定义7:分布函数的定义得
P { X > 1 } = 1 − P { X ≤ 1 } = 1 − F ( 1 ) = 1 − [ ∫ − ∞ 0 f ( t ) d t + ∫ 0 1 f ( t ) d t ] = 1 − [ 0 + ( − e − t ) ∣ 0 1 ] = 1 − ( − e − 1 − ( − e − 0 ) ) = e − 1 P\{X \gt 1\} = 1 - P\{X \le 1\} = 1 - F(1) = 1 - [ \int_{-\infty}^{0}f(t)dt + \int_{0}^{1}f(t)dt] = 1 - [0 + (-e^{-t}) | _{0}^{1}] = 1 - (-e^{-1} - (-e^{}-0)) = e^{-1} P{X>1}=1−P{X≤1}=1−F(1)=1−[∫−∞0f(t)dt+∫01f(t)dt]=1−[0+(−e−t)∣01]=1−(−e−1−(−e−0))=e−1
特别地啰嗦下:
方法一直接通过积分计算 概率密度与区间长度乘积的积分,积分上下限就根据 X X X的取值范围即可。
方法二,辗转通过 概率函数的方法,再通过概率概率函数的性质来计算,那么积分就必须从 − ∞ -\infty −∞积到边界线 x = 1 x=1 x=1。为什么是积到边界线而不是继续从边界线 x = 1 x=1 x=1继续积到 x → + ∞ x \to +\infty x→+∞呢?因为,继续从边界线 x = 1 x=1 x=1继续积到 x → + ∞ x \to +\infty x→+∞呢有概率密度计算概率函数 F ( x ) F(x) F(x)的计算步骤,而这里已经确定 x = 1 x = 1 x=1了,因此不用再继续积下去。
关于积分上下限的说明
3.3 正态分布
定义11:若随机变量
X
X
X的概率密度为:
f
(
x
)
=
1
2
π
σ
e
−
(
x
−
μ
)
2
2
σ
2
,
−
∞
<
x
<
+
∞
f(x) = \frac{1}{\sqrt{2\pi} \sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}\ \ \ \ ,\ \ \ \ -\infty \lt x \lt +\infty
f(x)=2πσ1e−2σ2(x−μ)2 , −∞<x<+∞
其中
μ
,
σ
2
\mu,\ \sigma^2
μ, σ2为常数,
−
∞
<
μ
<
+
∞
,
μ
>
0
-\infty \lt \mu \lt +\infty,\ \mu \gt 0
−∞<μ<+∞, μ>0,则称
X
X
X服从参数为
μ
,
σ
2
\mu,\ \sigma^2
μ, σ2的正态分布,简记
X
∼
N
(
μ
,
σ
2
)
X \sim N(\mu, \sigma^2)
X∼N(μ,σ2)。
f ( x ) f(x) f(x)的图形如下:
习惯上,称服从正态分布的随机变量为正态随机变量;又称正态分布的概率密度曲线为正态分布曲线,它有以下性质:
(1) 曲线关于之直线 x = μ x = \mu x=μ对称,这表明对于任何 h > 0 h \gt 0 h>0,都有 P { μ − h < X < μ } = P { μ < X < μ + h } P\{\mu-h \lt X \lt \mu\} = P\{\mu \lt X \lt \mu + h\} P{μ−h<X<μ}=P{μ<X<μ+h}。
(2) 当 x = μ x = \mu x=μ时,取最大值 f ( μ ) = 1 2 π σ f(\mu) = \frac{1}{\sqrt{2\pi} \sigma} f(μ)=2πσ1,在 x = μ ± σ x = \mu \pm \sigma x=μ±σ处曲线有拐点;曲线以 x x x轴为渐近线。
(3) 当 σ \sigma σ给定, μ 1 < μ 2 \mu_1 \lt \mu_2 μ1<μ2时;
f 1 ( x ) = 1 2 π σ e − ( x − μ 1 ) 2 2 σ 2 , f 2 ( x ) = 1 2 π σ e − ( x − μ 2 ) 2 2 σ 2 f_1(x) = \frac{1}{\sqrt{2\pi} \sigma} e^{-\frac{(x-\mu_1)^2}{2\sigma^2}}\ \ \ \ ,\ \ \ \ f_2(x) = \frac{1}{\sqrt{2\pi} \sigma} e^{-\frac{(x-\mu_2)^2}{2\sigma^2}} f1(x)=2πσ1e−2σ2(x−μ1)2 , f2(x)=2πσ1e−2σ2(x−μ2)2
其图像为:
实际上,两条曲线可沿着 x x x轴平移而得,不改变其形状,可见正态分布曲线的位置完全由 μ \mu μ决定, μ \mu μ是正态分布的中心。
(4) 当 μ \mu μ给定且 σ 1 < σ 2 \sigma_1 \lt \sigma_2 σ1<σ2时;
f 3 ( x ) = 1 2 π σ 1 e − ( x − μ ) 2 2 σ 1 2 , f 4 ( x ) = 1 2 π σ 2 e − ( x − μ ) 2 2 σ 2 2 f_3(x) = \frac{1}{\sqrt{2\pi} \sigma_1} e^{-\frac{(x-\mu)^2}{2\sigma_1^2}}\ \ \ \ ,\ \ \ \ f_4(x) = \frac{1}{\sqrt{2\pi} \sigma_2} e^{-\frac{(x-\mu)^2}{2\sigma_2^2}} f3(x)=2πσ11e−2σ12(x−μ)2 , f4(x)=2πσ21e−2σ22(x−μ)2
其图像为:
可见 σ \sigma σ越小,图形越尖, σ \sigma σ越大,图形越平缓;正态分布曲线中 σ \sigma σ的值刻画了正态随机变量取值的分散程度, σ \sigma σ越小,分散程度越小, σ \sigma σ越大,分散程度越大。
设 X ∼ N ( μ , σ 2 ) X \sim N(\mu,\ \sigma^2) X∼N(μ, σ2),则 X X X的分布函数为: F ( x ) = ∫ − ∞ x 1 2 π σ e − ( x − μ ) 2 2 σ 2 d t F(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi} \sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}dt F(x)=∫−∞x2πσ1e−2σ2(x−μ)2dt;它的图形为:
特别地,当 μ = 0 , σ = 1 \mu = 0, \sigma = 1 μ=0,σ=1时,正态分布称为标准正态分布 N ( 0 , 1 ) N(0,\ 1) N(0, 1)。为了区别,标准正态分布的密度和分布函数分别记为 φ ( x ) , Φ ( x ) \varphi(x),\ \varPhi(x) φ(x), Φ(x),即:
φ ( x ) = 1 2 π e − x 2 2 , − ∞ < x < + ∞ \varphi(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}},\ \ \ \ -\infty \lt x \lt +\infty φ(x)=2π1e−2x2, −∞<x<+∞
Φ ( x ) = 1 2 π ∫ − ∞ x e − t 2 2 d t , − ∞ < x < + ∞ \varPhi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{t^2}{2}}dt,\ \ \ \ -\infty \lt x \lt +\infty Φ(x)=2π1∫−∞xe−2t2dt, −∞<x<+∞
其中, φ ( x ) \varphi(x) φ(x)的图像为:
显然, φ ( x ) \varphi(x) φ(x)是关于 y y y轴对称的,且在 x = 0 x=0 x=0时取最大值 1 2 π \frac{1}{\sqrt{2\pi}} 2π1。
对于标准正态分布函数 Φ ( x ) \varPhi(x) Φ(x),它有下列性质:
(1) Φ ( − x ) = 1 − Φ ( x ) \varPhi(-x) = 1 - \varPhi(x) Φ(−x)=1−Φ(x) ;这根据前面的知识时显而易见的;
(2) Φ ( 0 ) = 1 2 \varPhi(0) = \frac{1}{2} Φ(0)=21; Φ ( x ) \varPhi(x) Φ(x)的值可以通过查询标准正态分布表获取;
下列公式揭示了一般正态分布函数 F ( x ) F(x) F(x)与标准正态分布函数 Φ ( x ) \varPhi(x) Φ(x)的关系:
(1) 设 X ∼ N ( μ , σ 2 ) X \sim N(\mu,\ \sigma^2) X∼N(μ, σ2),其分布函数为 F ( x ) F(x) F(x),则: F ( x ) = P { X ≤ x } = Φ ( x − μ σ ) F(x) = P\{X \le x\} = \varPhi(\frac{x-\mu}{\sigma}) F(x)=P{X≤x}=Φ(σx−μ);证明过程:
因为: F ( x ) = 1 2 π σ ∫ − ∞ x e − ( t − μ ) 2 2 σ 2 d t F(x) = \frac{1}{\sqrt{2\pi} \sigma} \int_{-\infty}^{x} e^{-\frac{(t-\mu)^2}{2\sigma^2}} dt F(x)=2πσ1∫−∞xe−2σ2(t−μ)2dt;作为代换,我们令 u = t − μ σ u = \frac{t-\mu}{\sigma} u=σt−μ,则 ∵ u ′ = d u d t ∴ d u = 1 σ d t ∴ d t = σ d u \because u' = \frac{du}{dt} \ \ \therefore du = \frac{1}{\sigma}dt \ \ \therefore dt = \sigma du ∵u′=dtdu ∴du=σ1dt ∴dt=σdu;
代换后: F ( x ) = 1 2 π σ ∫ − ∞ x − μ σ e − 1 2 u 2 σ d u = Φ ( x − μ σ ) F(x) = \frac{1}{\sqrt{2\pi} \sigma} \int_{-\infty}^{\frac{x-\mu}{\sigma}} e^{-\frac{1}{2} u^2} \sigma du = \varPhi(\frac{x - \mu}{\sigma}) F(x)=2πσ1∫−∞σx−μe−21u2σdu=Φ(σx−μ) # 注意,这里因为使用了代换量,积分上下界也要跟随变化!!
(2) P { a < x ≤ b } = P { a ≤ x < b } = P { a ≤ x ≤ b } = P { a < x < b } = F ( b ) − F ( a ) = Φ ( b − μ σ ) − Φ ( a − μ σ ) P\{a \lt x \le b\} = P\{a \le x \lt b\} = P\{a \le x \le b\} = P\{a \lt x \lt b\} = F(b) - F(a) = \varPhi(\frac{b-\mu}{\sigma}) - \varPhi(\frac{a-\mu}{\sigma}) P{a<x≤b}=P{a≤x<b}=P{a≤x≤b}=P{a<x<b}=F(b)−F(a)=Φ(σb−μ)−Φ(σa−μ)
(3) P { x > a } = P { X ≥ a } = 1 − P { x ≤ a } = 1 − F ( a ) = 1 − Φ ( a − μ σ ) P\{x \gt a\} = P\{ X \ge a\} = 1 - P\{ x \le a\} = 1 - F(a) = 1 - \varPhi(\frac{a - \mu}{\sigma}) P{x>a}=P{X≥a}=1−P{x≤a}=1−F(a)=1−Φ(σa−μ)
例7:设 X ∼ N ( 0 , 1 ) X \sim N(0,1) X∼N(0,1),证明:对于任意的 h > 0 h \gt 0 h>0,有 P { ∣ x ∣ ≤ h } = 2 Φ ( h ) − 1 P\{|x| \le h\} = 2\varPhi(h) - 1 P{∣x∣≤h}=2Φ(h)−1。
证明: P { ∣ X ∣ ≤ h } = P { − h ≤ X ≤ h } = Φ ( h ) − Φ ( − h ) = Φ ( h ) − [ 1 − Φ ( h ) ] = 2 Φ ( h ) − 1 P\{|X| \le h\} = P\{-h \le X \le h\} = \varPhi(h) - \varPhi(-h) = \varPhi(h) - [1 - \varPhi(h)] = 2\varPhi(h) - 1 P{∣X∣≤h}=P{−h≤X≤h}=Φ(h)−Φ(−h)=Φ(h)−[1−Φ(h)]=2Φ(h)−1
例8:设 X ∼ N ( 0 , 1 ) X \sim N(0,1) X∼N(0,1)求:
(1) P { X < 2.35 } P\{X \lt 2.35\} P{X<2.35}
(2) P { X < − 3.03 } P\{X \lt -3.03\} P{X<−3.03}
(3) P { ∣ X ∣ < 1.54 } P\{|X| \lt 1.54\} P{∣X∣<1.54}
解:(1) P { X < 2.35 } = Φ ( 2.35 ) = 0.9906 P\{X \lt 2.35\} = \varPhi(2.35) = 0.9906 P{X<2.35}=Φ(2.35)=0.9906 (直接查表) # 找到行头为2.3,列头为5表格对应的值。
(2) P { X < − 3.03 } = Φ ( − 3.03 ) = 1 − Φ ( 3.03 ) = 1 − 0.9995 = 0.0005 P\{X \lt -3.03\} = \varPhi(-3.03) = 1 - \varPhi(3.03) = 1 - 0.9995 = 0.0005 P{X<−3.03}=Φ(−3.03)=1−Φ(3.03)=1−0.9995=0.0005 (查表)
(3) P { ∣ X ∣ < 1.54 } = P { − 1.54 < X < 1.54 } = 2 Φ ( 1.54 ) − 1 = 2 × 0.9382 − 1 = 0.8764 P\{|X| \lt 1.54\} = P\{-1.54 \lt X \lt 1.54\} = 2\varPhi(1.54) - 1 = 2 \times 0.9382 - 1 = 0.8764 P{∣X∣<1.54}=P{−1.54<X<1.54}=2Φ(1.54)−1=2×0.9382−1=0.8764
例9:设 X ∼ N ( 1.5 , 4 ) X \sim N(1.5,4) X∼N(1.5,4)求:
(1) P { X < 3.5 } P\{X \lt 3.5\} P{X<3.5}
(2) P { 1.5 < X < 3.5 } P\{1.5 \lt X \lt 3.5\} P{1.5<X<3.5}
(3) P { ∣ X ∣ ≥ 3 } P\{|X| \ge 3\} P{∣X∣≥3}
解:由题目知 μ = 1.5 , σ = 2 \mu = 1.5, \ \sigma = 2 μ=1.5, σ=2,记 F ( x ) F(x) F(x)为 X X X的分布函数:
(1) P { X < 3.5 } = F ( 3.5 ) = Φ ( x − μ σ ) = Φ ( 3.5 − 1.5 2 ) = Φ ( 1 ) = 0.8413 P\{X \lt 3.5\} = F(3.5) = \varPhi(\frac{x-\mu}{\sigma}) = \varPhi(\frac{3.5 - 1.5}{2}) = \varPhi(1) = 0.8413 P{X<3.5}=F(3.5)=Φ(σx−μ)=Φ(23.5−1.5)=Φ(1)=0.8413
(2) P { 1.5 < X < 3.5 } = F ( 3.5 ) − F ( 1.5 ) = F ( 1 ) − F ( 0 ) = 0.8413 − 0.5 = 0.3413 P\{1.5 \lt X \lt 3.5\} = F(3.5) - F(1.5) = F(1) - F(0) = 0.8413 - 0.5 = 0.3413 P{1.5<X<3.5}=F(3.5)−F(1.5)=F(1)−F(0)=0.8413−0.5=0.3413
(3) P { X ≥ 3 } = P { X ≤ − 3 } + P { X ≥ 3 } = F ( − 3 ) + ( 1 − F ( 3 ) ) P\{X \ge 3\} = P\{ X \le -3\} + P\{X \ge 3\} = F(-3) + (1 - F(3)) P{X≥3}=P{X≤−3}+P{X≥3}=F(−3)+(1−F(3))
= Φ ( − 3 − 1.5 2 ) + 1 − Φ ( 3 − 1.5 2 ) = Φ ( − 2.25 ) − Φ ( 0.75 ) + 1 = 1 − Φ ( 2.25 ) + 1 − v a r P h i ( 0.75 ) = 1 − 0.9878 + 1 − 0.7734 = 0.2388 = \varPhi(\frac{-3-1.5}{2}) + 1 - \varPhi(\frac{3-1.5}{2}) = \varPhi(-2.25) - \varPhi(0.75) + 1 = 1 - \varPhi(2.25) + 1 - varPhi(0.75) = 1-0.9878 + 1-0.7734 = 0.2388 =Φ(2−3−1.5)+1−Φ(23−1.5)=Φ(−2.25)−Φ(0.75)+1=1−Φ(2.25)+1−varPhi(0.75)=1−0.9878+1−0.7734=0.2388
★ ★ ★ \bigstar \bigstar \bigstar ★★★易错点提醒: F ( − x ) F(-x) F(−x)不一定等于 1 − F ( 3 ) 1 - F(3) 1−F(3);只有在标准正态分布下 Φ ( − x ) = 1 − Φ ( x ) \varPhi(-x) = 1-\varPhi(x) Φ(−x)=1−Φ(x)才成立!!!
同时,也可以利用 P { ∣ X ∣ ≥ 3 } = 1 − P { ∣ X ∣ < 3 } = 1 − P { − 3 < X < 3 } P\{|X| \ge 3\} = 1 - P\{|X| \lt 3\} = 1 - P\{-3 \lt X \lt 3\} P{∣X∣≥3}=1−P{∣X∣<3}=1−P{−3<X<3}来计算!
例10:设 X ∼ N ( μ , σ 2 ) X \sim N(\mu, \sigma^2) X∼N(μ,σ2)求 X X X落在区间 [ μ − k σ , μ + k σ ] [\mu -k\sigma, \mu +k\sigma] [μ−kσ,μ+kσ]的概率,其中 k = 1 , 2 , . . . k=1,2,... k=1,2,...
解: P { μ − k σ ≤ X μ + k σ } = F ( μ + k σ ) − F ( μ − k σ ) = Φ ( ( μ + k σ ) − μ σ ) − Φ ( ( μ − k σ ) − μ σ ) = Φ ( k ) − Φ ( − k ) = 2 Φ ( k ) − 1 P\{\mu-k\sigma \le X \mu+k\sigma\} = F(\mu+k\sigma) - F(\mu-k\sigma) = \varPhi(\frac{(\mu + k\sigma)-\mu}{\sigma}) - \varPhi(\frac{(\mu - k\sigma)-\mu}{\sigma}) = \varPhi(k) - \varPhi(-k) = 2\varPhi(k) - 1 P{μ−kσ≤Xμ+kσ}=F(μ+kσ)−F(μ−kσ)=Φ(σ(μ+kσ)−μ)−Φ(σ(μ−kσ)−μ)=Φ(k)−Φ(−k)=2Φ(k)−1 ;则:
k = 1 ; P { μ − σ ≤ X ≤ μ + σ } = 2 Φ ( 1 ) − 1 = 0.6826 k=1;\ \ P\{\mu-\sigma \le X \le \mu+\sigma\} = 2\varPhi(1) - 1 = 0.6826 k=1; P{μ−σ≤X≤μ+σ}=2Φ(1)−1=0.6826
k = 2 ; P { μ − 2 σ ≤ X ≤ μ + 2 σ } = 2 Φ ( 2 ) − 1 = 0.9544 k=2;\ \ P\{\mu-2\sigma \le X \le \mu+2\sigma\} = 2\varPhi(2) - 1 = 0.9544 k=2; P{μ−2σ≤X≤μ+2σ}=2Φ(2)−1=0.9544
k = 3 ; P { μ − 3 σ ≤ X ≤ μ + 3 σ } = 2 Φ ( 3 ) − 1 = 0.9973 k=3;\ \ P\{\mu-3\sigma \le X \le \mu+3\sigma\} = 2\varPhi(3) - 1 = 0.9973 k=3; P{μ−3σ≤X≤μ+3σ}=2Φ(3)−1=0.9973
★ ★ ★ \bigstar \bigstar \bigstar ★★★由此可以看出:尽管正态随机变量取值范围为 ( − ∞ , + ∞ ) (-\infty,+\infty) (−∞,+∞),但他的值落在 [ μ − 3 σ , μ + 3 σ ] [\mu-3\sigma,\mu+3\sigma] [μ−3σ,μ+3σ]的概率为 0.9973 0.9973 0.9973,很接近 100 % 100\% 100%这个性质被称为正态分布的 3 σ 3\sigma 3σ规则。
大家应该都听过六西格玛质量管理模式,实际上也与此有关,大家有兴趣可以算算 6 σ : [ μ − 3 σ , μ + 3 σ ] 6\sigma :[\mu-3\sigma,\mu+3\sigma] 6σ:[μ−3σ,μ+3σ]的概率。
定义12: 设 X ∼ N ( 0 , 1 ) X \sim N(0,1) X∼N(0,1),若 μ α \mu_{\alpha} μα满足条件: P { X > μ α } = α , 0 < α < 1 P\{X \gt \mu_{\alpha}\} = \alpha, \ \ 0 \lt \alpha \lt 1 P{X>μα}=α, 0<α<1;则称点 μ α \mu_{\alpha} μα为标准正态分布的上侧 α \alpha α分位数,简称 α \alpha α分位数。见图:
常见的上侧分位数:
μ 0.1 = 1.282 , μ 0.05 = 1.645 , μ 0 . 025 = 1.960 \mu_{0.1} = 1.282,\ \ \ \ \mu_{0.05} = 1.645,\ \ \ \ \mu_0.025 = 1.960 μ0.1=1.282, μ0.05=1.645, μ0.025=1.960
μ 0.01 = 2.326 , μ 0.005 = 2.567 \mu_{0.01} = 2.326,\ \ \ \ \mu_{0.005} = 2.567 μ0.01=2.326, μ0.005=2.567
μ 0.0001 = 3.090 \mu_{0.0001} = 3.090 μ0.0001=3.090