作者:baihacker
来源:http://hi.baidu.com/feixue http://hi.csdn.net/baihacker
问题描述:
12个高矮不同的人,排成两排,每排必须是从矮到高排列,而且第二排比对应的第一排的人高,问排列方式有多少种?
还有一道和这个题相关的题:http://blog.csdn.net/jiyanfeng1/article/details/8068811 (平衡括号问题)
问题分析:
我们先把这12个人从低到高排列,然后,选择6个人排在第一排,那么剩下的6个肯定是在第二排.
用0表示对应的人在第一排,用1表示对应的人在第二排,那么含有6个0,6个1的序列,就对应一种方案.
比如000000111111就对应着
第一排:0 1 2 3 4 5
第二排:6 7 8 9 10 11
010101010101就对应着
第一排:0 2 4 6 8 10
第二排:1 3 5 7 9 11
问题转换为,这样的满足条件的01序列有多少个.
观察1的出现,我们考虑这一个出现能不能放在第二排,显然,在这个1之前出现的那些0,1对应的人
要么是在这个1左边,要么是在这个1前面.而肯定要有一个0的,在这个1前面,统计在这个1之前的0和1的个数.
也就是要求,0的个数大于1的个数.
OK,问题已经解决.
如果把0看成入栈操作,1看成出栈操作,就是说给定6个元素,合法的入栈出栈序列有多少个.
这就是catalan数,这里只是用于栈,等价地描述还有,二叉树的枚举,多边形分成三角形的个数,圆括弧插入公式中的
方法数,其通项是c(2n, n)/(n+1).
在 < <计算机程序设计艺术>>,第三版,Donald E.Knuth著,苏运霖译,第一卷,508页,给出了证明:
问题大意是用S表示入栈,X表示出栈,那么合法的序列有多少个(S的个数为n)
显然有c(2n, n)个含S,X各n个的序列,剩下的是计算不允许的序列数(它包含正确个数的S和X,但是违背其它条件).
在任何不允许的序列中,定出使得X的个数超过S的个数的第一个X的位置.然后在导致并包括这个X的部分序列中,以
S代替所有的X并以X代表所有的S.结果是一个有(n+1)个S和(n-1)个X的序列.反过来,对一垢一种类型的每个序列,我们都能
逆转这个过程,而且找出导致它的前一种类型的不允许序列.例如XXSXSSSXXSSS必然来自SSXSXXXXXSSS.这个对应说明,不允许
的序列的个数是c(2n, n-1),因此an = c(2n, n) - c(2n, n-1).[Comptes Rendus Acad.Sci.105(Paris, 1887), 436~437]
验证:
其中F表示前排,B表示后排,在枚举出前排的人之后,对应的就是后排的人了,然后再验证是不是满足后面的比前面对应的人高的要求.
C/C++ code
#include <iostream>
using namespace std;
int bit_cnt(int n)
{
int result = 0;
for (; n; n &= n-1, ++result);
return result;
}
int main()
{
int F[6], B[6];
int ans = 0;
for (int state = 0; state < (1 << 12); ++state) if (bit_cnt(state) == 6)
{
int i = 0, j = 0;
for (int k = 0; k < 12; ++k) if (state&(1<<k)) F[i++] = k; else B[j++] = k;
int ok = 1;
for (int k = 0; k < 6; ++k) if (B[k] < F[k]) {ok = 0; break;}
ans += ok;
}
cout << ans << endl;
return 0;
}
结果:132
而c(12, 6)/7 = 12*11*10*9*8*7/(7*6*5*4*3*2) = 132
注意:c(2n, n)/(n+1) = c(2n, n) - c(2n, n-1)
估计出题的人也读过 < <计算机程序艺术>>吧.
PS:
另一个很YD的问题:
有编号为1到n(n可以很大,不妨在这里假定可以达到10亿)的若干个格子,从左到右排列.
在某些格子中有一个棋子,不妨设第xi格有棋子(1 <=i <=k, 1 <=k <=n)
每次一个人可以把一个棋子往左移若干步,
但是不能跨越其它棋子,也要保证每个格子至多只有一个棋子.
两个人轮流移动,移动不了的为输,问先手是不是有必胜策略.
From: http://blog.csdn.net/nicebooks/article/details/6341638
所以自己也考虑了一个算法,也在网上看到别人的不同的算法。感觉我这个算法遍历效率很高,而且也很简洁(不敢用最来形容,怕强中更有强中手,当然如果能推导出公式来求解的话肯定会比我这个算法快,这个公式是F(n) = (n! / ((n/2)! * (n/2)!))/ (n/2 +1)).
我的算法思想是这样的:
(1)把排队的问题转换成数字排列问题,类似于0- 11这12个数排成2行。
(2)可以只考虑前一排的情况,因为只要前一排是符合某些条件,剩余的数按顺序放后排自然能满足条件。
(3)第一排数要符合的条件是:
下面数值表示的是位置,
0 1 2 3 4 5
6 7 8 9 10 11
对于位置0,可能的数的范围是0
对于位置1,可能的数的范围是1,2
对于位置2,可能的数的范围是2,3,4
对于位置3,可能的数的范围是3,4,5,6
对于位置4,可能的数的范围是4,5,6,7,8
对于位置5,可能的数的范围是5,6,7,8,9,10
这样可以推导出:
对于位置为n的数,其数的范围是[n, 2n].
这样对于0-5的位置的数的范围就是[{0,1,2,3,4,5}, {0,2,4,6,8,10}],
我们把这个0-5的位置的数当成一个大的数来看待,对其进行++操作,只不过进位的时候是按每个位置的数的范围来进行进位。
比如:
1.目前数是{0,1,2,3,4,5}, ++操作后,数变为{0,1,2,3,4,6},因为6小于且等于位置5的最大值2n = 10,所以此组合是个符合要求的组合。
2.又如目前数是{0,1,2,3,4,10}, ++操作后,数变为{0,1,2,3,4,11},因为11大于位置5的最大值2n = 10, 因此要进位,这样位置4的数++,再检查位置4的数++后是5,小于且等于位置4的最大值2n = 8,这个位置符合条件,而位置5的数要置"0",这个0不能是再从范围的起始值开始,而是要等于位置4的数+1.因为从起始值开始的数肯定是小于位置4的值的。
3.以此类推,如果目前数是{0,1,4,6,8,10},++操作后,需要进位,一步一步往前进位,最终进位位置1的数,数就变成了{0,2,5,7,9,11},然后要把位置1之后位置的每个位置的数置"0", 等于前一个位置的数+1,这样最后数就是{0,2,3,4,5,6}.
4.检查此数组合是否符合条件是,检查最后一个数是否小于且等于其位置的最大值。
附算法如下:
#include <iostream>
#include <vector>
using namespace std;
class pai2dui
{
public:
pai2dui(int n)
:mMaxNum(n / 2)
,mCount(0)
,mAllCount(0)
{
if (n > 1)
{
mCount = 1;
for(int i = 0; i < n / 2; i++)
{
mData.push_back(i);
}
}
}
void run()
{
if(mMaxNum <= 0)
{
return;
}
int i = mMaxNum - 1;//从最后一个数开始++操作
while (i)
{
++mData[i]; //对位置为i的数进行++操作
mAllCount++; // 总循环的此数计数.
if (mData[i] <= 2 * i)
{// 如果该位置的数不超过对应位置的最大值,那么对其后面的位置的数置”0”.
for (int j = i + 1; j < mMaxNum; j++)
{//其后面位置的数等前面位置的数+1,能确保这个数是进位后”最小”符合的数的组合
mData[j] = mData[j - 1] + 1;
}
}
else
{// 如果该位置的数超过了对应位置的数的最大值,将数的位置往前移动一位,然后使用
// continue重新++操作。
i--;
continue;
}
if (mData[mMaxNum - 1] <= 2 * (mMaxNum - 1))
{//检查最后一位的数是否小于且等于其位置的最大值,如果是的话,此数组合符合要求
// 计数并打印
++mCount;
for(int k = 0; k < mMaxNum; k++)
{
cout<< mData[k] << " ";
}
cout << endl;
// 把++操作的数的位置置回最后一个位置。
i = mMaxNum - 1;
}
else
{ // 如果大于其位置的最大值,说明已遍历完毕,超过了此数组合的最大值。
return;
}
}
}
void print()
{
cout<<mCount<<endl;
cout<<mAllCount<<endl;
}
private:
int mMaxNum;
vector <int> mData;
int mCount;
int mAllCount;
};
int main(int argc, char* argv[])
{
int n;
while(cin>>n)
{
pai2dui p(n);
p.run();
p.print();
}
return 0;