题意:一个图,开始边数为零,然后每次加一条边,问每次加完边之后存在多少对这样的有序点对(u,v),使得u->v存在一条路径经过的点数为偶数(边可以重复走,点也重复记)。
思路:xjb画一下就会发现,对于一个二分图的答案数就是两部分点数的乘积,其他连通图的任意两点都是可以xjb走出一条这样的路径。那么这个题就变成了维护二分图的信息了,按照叉姐给的思路用个并查集xjb维护一下。开始以为如果分成多个联通块的话不好维护,网上也没找到什么靠谱的代码,然后自己就yy了一发,后来发现其实只要维护一下每次加边的时候,减去原来的答案,加上现在的答案就可以了。
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
const int maxn = 100007;
int n, m, par[maxn], opo[maxn]; // opo[i]表示i点对应的二分图的另一半 -1代表孤立点 -2代表非二分图
int find(int x)
{
if(par[x] < 0) return x;
return par[x] = find(par[x]);
}
void Uinon(int x, int y)
{
if(x == y) return;
if(y < 0 || x < 0) return;
par[x] += par[y];
par[y] = x;
}
int main()
{
int u, v;
long long ans = 0;
scanf("%d %d", &n,&m);
memset(opo, -1, sizeof(opo));
memset(par, -1, sizeof(par));
for(int i = 1; i <= m; i ++) {
scanf("%d %d", &u, &v);
int x = find(u);
int y = find(v);
if(x == y) {
y = opo[x];
if(opo[x] == -2) { //如果在一个图中
printf("%lld\n", ans);
continue;
}
// 如果一个二分图变成非二分图
int numx = - par[x];
int numy = - par[y];
Uinon(x, y);
x = find(x);
opo[x] = -2;
ans = ans - 1ll * numx * numy + 1ll * (numx + numy) * (numx + numy - 1) / 2;
} else {
if(opo[x] == -2 || opo[y] == -2) {
if(opo[x] != -2) std::swap(x, y); //把y换到二分图的位置,省得分类讨论
if(opo[y] == -1) { //如果y是孤立点,其实可以去掉,跟下面重了,懒得改了
ans += -par[x];
Uinon(x, y);
x = find(x);
opo[x] = -2;
printf("%lld\n", ans);
continue;
}
if(opo[y] != -2) { //如果y是二分图
ans -= 1ll * par[y] * par[opo[y]];
ans += 1ll * (-par[y] - par[opo[y]]) * (-par[y] - par[opo[y]] - 1ll) / 2ll;
ans += 1ll * par[x] * (par[y] + par[opo[y]]);
} else { //如果y也是非二分图且不是孤立点
ans += 1ll * par[x] * par[y];
}
Uinon(y, opo[y]);
y = find(y);
Uinon(x, y);
x = find(x);
opo[x] = -2;
printf("%lld\n", ans);
continue;
}
// 如果都是二分图,加一条边合并还是二分图
if(opo[y] != -1) ans -= 1ll * par[opo[y]] * par[y];
if(opo[x] != -1 && opo[x] != y) ans -= 1ll * par[opo[x]] * par[x];
Uinon(x, opo[y]);
Uinon(y, opo[x]);
x = find(x), y = find(y);
opo[x] = y, opo[y] = x;
ans += 1ll * par[x] * par[y];
}
printf("%lld\n", ans);
}
}