弱校连萌之十一大作战v10.2 G【 Road History 】

题意:一个图,开始边数为零,然后每次加一条边,问每次加完边之后存在多少对这样的有序点对(u,v),使得u->v存在一条路径经过的点数为偶数(边可以重复走,点也重复记)。

思路:xjb画一下就会发现,对于一个二分图的答案数就是两部分点数的乘积,其他连通图的任意两点都是可以xjb走出一条这样的路径。那么这个题就变成了维护二分图的信息了,按照叉姐给的思路用个并查集xjb维护一下。开始以为如果分成多个联通块的话不好维护,网上也没找到什么靠谱的代码,然后自己就yy了一发,后来发现其实只要维护一下每次加边的时候,减去原来的答案,加上现在的答案就可以了。


#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
const int maxn = 100007;

int n, m, par[maxn], opo[maxn]; // opo[i]表示i点对应的二分图的另一半 -1代表孤立点 -2代表非二分图

int find(int x)
{
	if(par[x] < 0) return x;
	return par[x] = find(par[x]);
}

void Uinon(int x, int y)
{
	if(x == y) return;
	if(y < 0 || x < 0) return;
	par[x] += par[y];
	par[y] = x;
}

int main()
{
	int u, v;
	long long ans = 0;
	scanf("%d %d", &n,&m);
	memset(opo, -1, sizeof(opo));
	memset(par, -1, sizeof(par));
	for(int i = 1; i <= m; i ++) {
		scanf("%d %d", &u, &v);
		int x = find(u);
		int y = find(v);
		if(x == y) {
			y = opo[x];
			if(opo[x] == -2) { //如果在一个图中
				printf("%lld\n", ans);
				continue;
			}
			// 如果一个二分图变成非二分图
			int numx = - par[x]; 
			int numy = - par[y];
			Uinon(x, y);
			x = find(x);
			opo[x] = -2;
			ans = ans - 1ll * numx * numy + 1ll * (numx + numy) * (numx + numy - 1) / 2;
		
		} else {
			if(opo[x] == -2 || opo[y] == -2) {	
				if(opo[x] != -2) std::swap(x, y); //把y换到二分图的位置,省得分类讨论
				if(opo[y] == -1) { //如果y是孤立点,其实可以去掉,跟下面重了,懒得改了
					ans += -par[x]; 
					Uinon(x, y);
					x = find(x);
					opo[x] = -2;
					printf("%lld\n", ans);
					continue;
				}
				if(opo[y] != -2) { //如果y是二分图      
					ans -= 1ll * par[y] * par[opo[y]];
					ans += 1ll * (-par[y] - par[opo[y]]) * (-par[y] - par[opo[y]] - 1ll) / 2ll;
					ans += 1ll * par[x] * (par[y] + par[opo[y]]);
				} else { //如果y也是非二分图且不是孤立点
					ans += 1ll * par[x] * par[y];
				}
				Uinon(y, opo[y]);
				y = find(y);
				Uinon(x, y);
				x = find(x);
				opo[x] = -2;
				printf("%lld\n", ans);
				continue;
			}
			// 如果都是二分图,加一条边合并还是二分图
			if(opo[y] != -1) ans -= 1ll * par[opo[y]] * par[y];
			if(opo[x] != -1 && opo[x] != y) ans -= 1ll * par[opo[x]] * par[x];
			Uinon(x, opo[y]);
			Uinon(y, opo[x]);
			x = find(x), y = find(y);
			opo[x] = y, opo[y] = x;
			ans += 1ll * par[x] * par[y];
		}
		printf("%lld\n", ans);
	}
}
    	


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值