导数与微分

本文详细介绍了导数的概念,包括导数的定义、几何意义以及函数的可导性和连续性的关系。此外,还探讨了求导法则,如函数的和、差、积、商的求导,反函数和复合函数的求导,以及高阶导数。微分部分阐述了微分的定义、几何意义和微分在近似计算中的应用。通过这些基础知识,读者可以深入理解导数和微分在函数变化率和近似计算中的重要作用。
摘要由CSDN通过智能技术生成

导数概念

导数的定义

  1. 函数在一点处的导数和导函数
    1. 设函数 y=f(x) y = f ( x ) 在点 x0 x 0 的某个邻域内有定义,当自变量 x x x 0 处取得增量 Δx Δ x (点 x0+Δx x 0 + Δ x 仍在该邻域内)时,相应的函数取得增量 Δy=f(x0+Δx)f(x0) Δ y = f ( x 0 + Δ x ) − f ( x 0 ) ;如果 Δy Δ y Δx Δ x 之比当 Δx0 Δ x → 0 时的极限存在,则称函数 y=f(x) y = f ( x ) 在点 x0 x 0 处可导,并称这个极限为函数 y=f(x) y = f ( x ) 在点 x0 x 0 处的导数,记为 f(x0) f ′ ( x 0 ) ,即 f(x0)=limΔx0ΔyΔx=limΔx0f(x0+Δx)f(x0)Δx f ′ ( x 0 ) = lim Δ x → 0 Δ y Δ x = lim Δ x → 0 f ( x 0 + Δ x ) − f ( x 0 ) Δ x ,也可以记作 y|x=x0dydx|x=x0 y ′ | x = x 0 , d y d x | x = x 0 df(x)d(x)|x=x0 d f ( x ) d ( x ) | x = x 0 .函数 f(x) f ( x ) 在点 x0 x 0 处可导有事也说成 f(x) f ( x ) 在点 x0 x 0 具有导数或导数存在。常见的定义式形式有: f(x0)=limh0f(x0+h)f(x0)h f ′ ( x 0 ) = lim h → 0 f ( x 0 + h ) − f ( x 0 ) h f(x0)=limxx0f(x)f(x0)xx0 f ′ ( x 0 ) = lim x → x 0 f ( x ) − f ( x 0 ) x − x 0
    2. 导数反映了因变量随自变量的变化而变化的快慢程度,即函数的变化率问题
    3. 如果函数 y=f(x) y = f ( x ) 在开区间 I I 内的每点处都可导,就称函数 f ( x ) 在开区间 I I 内可导。这时,对于任一 x I ,都对应着 f(x) f ( x ) 的一个确定的导数值,这样就构成了一个新的函数,这个函数叫做原来函数 y=f(x) y = f ( x ) 的导函数,记作 yf(x)dydx y ′ , f ′ ( x ) , d y d x df(x)dx d f ( x ) d x
    4. f=limΔx0f(x+Δx)f(x)Δx f ′ = lim Δ x → 0 f ( x + Δ x ) − f ( x ) Δ x f(x)=limh0f(x+h)f(x)h f ′ ( x ) = lim h → 0 f ( x + h ) − f ( x ) h x x 是常量, Δ h 是变量)
    5. 函数 f(x) f ( x ) 在点 x0 x 0 处的导数 f(x0) f ′ ( x 0 ) 就是导函数 f(x) f ′ ( x ) 在点 x=x0 x = x 0 处的函数值,即 f(x0)=f(x)|x=x0 f ′ ( x 0 ) = f ′ ( x ) | x = x 0
    6. 导函数简称导数,而 f(x0) f ′ ( x 0 ) f(x) f ( x ) x0 x 0 处的导数或导数 f(x) f ′ ( x ) x0 x 0 处的值
  2. 常见导数
    1. 常数 f(x)=CC f ( x ) = C ( C 为 常 数 ) 的导数 f(x)=0 f ′ ( x ) = 0
    2. 幂函数 f(x)=xμμ f ( x ) = x μ ( μ 为 常 数 ) 的导数 f(x)=μxμ1 f ′ ( x ) = μ x μ − 1
    3. 正弦函数 f(x)=sinx f ( x ) = sin ⁡ x 的导数 f(x)=cosx
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Vi_NSN

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值