导数概念
导数的定义
- 函数在一点处的导数和导函数:
- 设函数 y=f(x) y = f ( x ) 在点 x0 x 0 的某个邻域内有定义,当自变量 x x 在 处取得增量 Δx Δ x (点 x0+Δx x 0 + Δ x 仍在该邻域内)时,相应的函数取得增量 Δy=f(x0+Δx)−f(x0) Δ y = f ( x 0 + Δ x ) − f ( x 0 ) ;如果 Δy Δ y 与 Δx Δ x 之比当 Δx→0 Δ x → 0 时的极限存在,则称函数 y=f(x) y = f ( x ) 在点 x0 x 0 处可导,并称这个极限为函数 y=f(x) y = f ( x ) 在点 x0 x 0 处的导数,记为 f′(x0) f ′ ( x 0 ) ,即 f′(x0)=limΔx→0ΔyΔx=limΔx→0f(x0+Δx)−f(x0)Δx f ′ ( x 0 ) = lim Δ x → 0 Δ y Δ x = lim Δ x → 0 f ( x 0 + Δ x ) − f ( x 0 ) Δ x ,也可以记作 y′|x=x0,dydx|x=x0 y ′ | x = x 0 , d y d x | x = x 0 或 df(x)d(x)|x=x0 d f ( x ) d ( x ) | x = x 0 .函数 f(x) f ( x ) 在点 x0 x 0 处可导有事也说成 f(x) f ( x ) 在点 x0 x 0 具有导数或导数存在。常见的定义式形式有: f′(x0)=limh→0f(x0+h)−f(x0)h f ′ ( x 0 ) = lim h → 0 f ( x 0 + h ) − f ( x 0 ) h 和 f′(x0)=limx→x0f(x)−f(x0)x−x0 f ′ ( x 0 ) = lim x → x 0 f ( x ) − f ( x 0 ) x − x 0
- 导数反映了因变量随自变量的变化而变化的快慢程度,即函数的变化率问题
- 如果函数 y=f(x) y = f ( x ) 在开区间 I I 内的每点处都可导,就称函数 在开区间 I I 内可导。这时,对于任一 ,都对应着 f(x) f ( x ) 的一个确定的导数值,这样就构成了一个新的函数,这个函数叫做原来函数 y=f(x) y = f ( x ) 的导函数,记作 y′,f′(x),dydx y ′ , f ′ ( x ) , d y d x 或 df(x)dx d f ( x ) d x
- 即 f′=limΔx→0f(x+Δx)−f(x)Δx f ′ = lim Δ x → 0 f ( x + Δ x ) − f ( x ) Δ x 或 f′(x)=limh→0f(x+h)−f(x)h f ′ ( x ) = lim h → 0 f ( x + h ) − f ( x ) h ( x x 是常量, 是变量)
- 函数 f(x) f ( x ) 在点 x0 x 0 处的导数 f′(x0) f ′ ( x 0 ) 就是导函数 f′(x) f ′ ( x ) 在点 x=x0 x = x 0 处的函数值,即 f′(x0)=f′(x)|x=x0 f ′ ( x 0 ) = f ′ ( x ) | x = x 0
- 导函数简称导数,而 f′(x0) f ′ ( x 0 ) 是 f(x) f ( x ) 在 x0 x 0 处的导数或导数 f′(x) f ′ ( x ) 在 x0 x 0 处的值
- 常见导数:
- 常数: f(x)=C(C为常数) f ( x ) = C ( C 为 常 数 ) 的导数 f′(x)=0 f ′ ( x ) = 0 ;
- 幂函数: f(x)=xμ(μ为常数) f ( x ) = x μ ( μ 为 常 数 ) 的导数 f′(x)=μxμ−1 f ′ ( x ) = μ x μ − 1
- 正弦函数: f(x)=sinx f ( x ) = sin x 的导数 f′(x)=cosx