定积分

定积分的概念和性质

定积分问题举例

  1. 曲边梯形的面积
    曲边梯形的面积可看作 n n 个窄矩形面积之和

    曲边梯形的面积
    Af(ξ1)Δx1+f(ξ2)Δx2+...+f(ξn)Δxn=limλ0i=1nf(ξi)Δxi
    ,其中 λ=max{Δx1Δx2...Δxn} λ = max { Δ x 1 , Δ x 2 , . . . , Δ x n } ξ ξ xi1 x i − 1 xi x i 间的任一值, Δxi=xixi1 Δ x i = x i − x i − 1
  2. 变速直线运动的路程
    s=limλ0i=1nv(τi)Δti s = lim λ → 0 ∑ i = 1 n v ( τ i ) Δ t i

定积分定义

  1. 设函数 f(x) f ( x ) [a,b] [ a , b ] 上有界,在 [a,b] [ a , b ] 中任意插入若干个分点
    a=x0<x1<x2<...<xn1<xn=b a = x 0 < x 1 < x 2 < . . . < x n − 1 < x n = b
    ,把区间 [a,b] [ a , b ] 分成 n n 个小区间
    [x0,x1],[x1,x2],...,[xn1,xn]
    ,各个小区间的长度依次为
    Δx1=x1x0,Δx2=x2x1,...,Δxn=xnxn1 Δ x 1 = x 1 − x 0 , Δ x 2 = x 2 − x 1 , . . . , Δ x n = x n − x n − 1
    ,在每个小区间 [xi1,xi] [ x i − 1 , x i ] 上任取一点 ξi(xi1ξixi) ξ i ( x i − 1 ≤ ξ i ≤ x i ) ,作函数值 f(ξi) f ( ξ i ) 与小区间长度 Δxi(i=1,2,...,n) Δ x i ( i = 1 , 2 , . . . , n ) ,并作出和
    S=i=1nf(ξi)Δxi S = ∑ i = 1 n f ( ξ i ) Δ x i
    ,记 λ=max{Δx1,Δx2,...,Δxn} λ = max { Δ x 1 , Δ x 2 , . . . , Δ x n } ,如果不论对 [a,b] [ a , b ] 怎样划分,也不论在小区间 [xi1,xi] [ x i − 1 , x i ] 上点 ξi ξ i 怎样选取,只要当 λ λ → 0时,和 S S 总趋于确定的极限I,那么称这个极限 I I 为函数f(x)在区间 [a,b] [ a , b ] 上的定积分(简称积分),记作 baf(x)dx ∫ a b f ( x ) d x ,即
    baf(x)dx=I=limλ0i=1nf(ξi)Δxi ∫ a b f ( x ) d x = I = lim λ → 0 ∑ i = 1 n f ( ξ i ) Δ x i
    ,其中 f(x) f ( x ) 叫做被积函数 f(x)dx f ( x ) d x 叫做被积表达式 x x 叫做积分变量a叫做积分下限 b b 叫做积分上限[a,b]叫做积分区间
  2. ni=1f(ξi)Δxi ∑ i = 1 n f ( ξ i ) Δ x i 通常称为 f(x) f ( x ) 的积分和,如果 f(x) f ( x ) [a,b] [ a , b ] 上的定积分存在,那么就说 f(x) f ( x ) [a,b] [ a , b ] 上可积
  3. f(x) f ( x ) 在区间 [a,b] [ a , b ] 上连续,则 f(x) f ( x ) [a,b] [ a , b ] 上可积
  4. f(x) f ( x ) 在区间 [a,b] [ a , b ] 上有界,且只有有限个间断点,则 f(x) f ( x ) [a,b] [ a , b ] 上可积

定积分的近似计算

  1. 在小区间 [xi1,xi] [ x i − 1 , x i ] 上,取 ξi=xx1 ξ i = x x − 1 ,应有
    baf(x)dx=limnbani=1nf(xi1) ∫ a b f ( x ) d x = lim n → ∞ b − a n ∑ i = 1 n f ( x i − 1 )
  2. 对于任一确定的正整数 n n ,有:
    abf(x)dxbani=1nf(xi1)
  3. f(xi)=yi(i=0,1,2...,n) f ( x i ) = y i ( i = 0 , 1 , 2... , n ) ,上式可记作
    baf(x)dxban(y0+y1+...+yn1)3 ∫ a b f ( x ) d x ≈ b − a n ( y 0 + y 1 + . . . + y n − 1 ) ( 3 )
  4. 如果取 ξi=xi ξ i = x i ,则可得近似公式
    baf(x)dxban(y1+y2+...+yn)4 ∫ a b f ( x ) d x ≈ b − a n ( y 1 + y 2 + . . . + y n ) ( 4 )
  5. 以上求定积分近似值的方法称为矩形法。公式 34 ( 3 ) 、 ( 4 ) 称为矩形法公式。常用的方法还有梯形法抛物线法(又称辛普森法
  6. 梯形法:
    baf(x)dxban(y0+y12+y1+y22+...+yn1+yn2)=ban(y0+yn2+y1+y2+...+yn1) ∫ a b f ( x ) d x ≈ b − a n ( y 0 + y 1 2 + y 1 + y 2 2 + . . . + y n − 1 + y n 2 ) = b − a n ( y 0 + y n 2 + y 1 + y 2 + . . . + y n − 1 )
    (梯形法公式所得近似值就是矩形公式(3)和(4)所得两个近似值的平均值)
  7. 抛物线法:
    baf(x)dxba3n[(y0+4y1+y2)+(y2+4y3+y4)+...+(yn2+4yn1)+yn]=ba3n[y0+yn+4(y1+y3+...+yn1)+2(y2+y4+...+yn2)] ∫ a b f ( x ) d x ≈ b − a 3 n [ ( y 0 + 4 y 1 + y 2 ) + ( y 2 + 4 y 3 + y 4 ) + . . . + ( y n − 2 + 4 y n − 1 ) + y n ] = b − a 3 n [ y 0 + y n + 4 ( y 1 + y 3 + . . . + y n − 1 ) + 2 ( y 2 + y 4 + . . . + y n − 2 ) ]

定积分的性质

  1. a=b a = b 时, baf(x)dx=0 ∫ a b f ( x ) d x = 0
  2. baf(x)dx=abf(x)dx ∫ a b f ( x ) d x = − ∫ b a f ( x ) d x ,即交换定积分的上下限时,定积分的绝对值不变而符号相反
  3. ba[f(x)±g(x)]dx=baf(x)dx±bag(x)dx ∫ a b [ f ( x ) ± g ( x ) ] d x = ∫ a b f ( x ) d x ± ∫ a b g ( x ) d x
  4. bakf(x)dx=kbaf(x)dxk ∫ a b k f ( x ) d x = k ∫ a b f ( x ) d x ( k 是 常 数 )
  5. a<c<b a < c < b ,则
    baf(x)dx=caf(x)dx+bcf(x)dx ∫ a b f ( x ) d x = ∫ a c f ( x ) d x + ∫ c b f ( x ) d x
  6. 如果在区间 [a,b] [ a , b ] f(x)1 f ( x ) ≡ 1 ,则
    ba1dx=badx=ba ∫ a b 1 d x = ∫ a b d x = b − a
  7. 如果在区间 [a,b] [ a , b ] 上, f(x)/ge0 f ( x ) / g e 0 ,则
    baf(x)dx0a<b ∫ a b f ( x ) d x ≥ 0 ( a < b )
  8. 如果在区间 [a,b] [ a , b ] 上, f(x)g(x) f ( x ) ≤ g ( x ) ,则
    baf(x)dxbag(x)dxa<b ∫ a b f ( x ) d x ≤ ∫ a b g ( x ) d x ( a < b )
  9. |baf(x)dx|ba|f(x)|dx(a<b) | ∫ a b f ( x ) d x | ≤ ∫ a b | f ( x ) | d x ( a < b )
  10. M M m分别是函数 f(x) f ( x ) 在区间 [a,b] [ a , b ] 上的最大值及最小值,则
    m(ba)baf(x)dxM(ba)a<b m ( b − a ) ≤ ∫ a b f ( x ) d x ≤ M ( b − a ) ( a < b )
  11. 定积分中值定理:如果函数 f(x) f ( x ) 在积分区间 [a,b] [ a , b ] 上连续,则在 [a,b] [ a , b ] 上至少存在一个点 ξ ξ ,使下式成立:
    baf(x)dx=f(ξ)(ba)aξb ∫ a b f ( x ) d x = f ( ξ ) ( b − a ) ( a ≤ ξ ≤ b )
  12. 由定积分中值定理得:
    f(ξ)=1baabf(x)dx f ( ξ ) = 1 b − a ∫ a b f ( x ) d x
    ,称为函数 f(x) f ( x ) 在区间 [a,b] [ a , b ] 上的平均值

微积分基本公式

积分上限的函数及其导数

  1. 如果函数 f(x) f ( x ) 在区间 [a,b] [ a , b ] 上连续,则积分上限的函数
    ϕ(x)=xaf(t)dt ϕ ( x ) = ∫ a x f ( t ) d t
    [a,b] [ a , b ] 上可导,并且它的导数
    ϕ(x)=ddxxaf(t)dt=f(x)axb ϕ ′ ( x ) = d d x ∫ a x f ( t ) d t = f ( x ) ( a ≤ x ≤ b )
  2. 如果函数 f(x) f ( x ) 在区间 [a,b] [ a , b ] 上连续,则函数
    ϕ(x)=xaf(t)dt ϕ ( x ) = ∫ a x f ( t ) d t
    就是 f(x) f ( x ) [a,b] [ a , b ] 上的一个原函数

牛顿-莱布尼茨公式

  1. 牛顿-莱布尼茨公式(也叫微积分基本公式):如果函数 F(x) F ( x ) 是连续函数 f(x) f ( x ) 在区间 [a,b] [ a , b ] 上的一个原函数,则
    abf(x)dx=F(b)F(a)4 ∫ a b f ( x ) d x = F ( b ) − F ( a ) ( 4 )
    ,也可写作
    baf(x)dx=[F(x)]ba ∫ a b f ( x ) d x = [ F ( x ) ] a b
  2. 一个连续函数在区间 [a,b] [ a , b ] 上的定积分等于它的任一个原函数在区间 [a,b] [ a , b ] 上的增量

定积分的换元法和分部积分法

定积分的换元法

  1. 假设函数 f(x) f ( x ) 在区间 [a,b] [ a , b ] 上连续,函数 x=φ(t) x = φ ( t ) 满足条件:
    1. φ(α)=aφ(β)=b φ ( α ) = a , φ ( β ) = b ;
    2. φ(t) φ ( t ) [α,β] [ α , β ] (或 [βα] [ β , α ] )上具有连续导数,且其值域 Rφ=[a,b] R φ = [ a , b ] ,则有:
      baf(x)dx=βαφ(t)dt ∫ a b f ( x ) d x = ∫ α β φ ′ ( t ) d t
      ,这个公式叫做定积分的换元公式
      1. x=φ(t) x = φ ( t ) 把原来变量 x x 代换成新变量t时,积分限也要换成相应于新变量 t t 的积分限;
      2. 求出f[φ(t)]φ(t)的一个原函数 ϕ(t) ϕ ( t ) 后,不必像计算不定积分那样再把 ϕ(t) ϕ ( t ) 变换成原来变量 x x 的函数,而只要把新变量t的上、下限分别代入 ϕ(t) ϕ ( t ) 中然后相减就行了
  2. f(x) f ( x ) [a,a] [ − a , a ] 上连续且为偶函数,则
    aaf(x)dx=2a0f(x)dx ∫ − a a f ( x ) d x = 2 ∫ 0 a f ( x ) d x
    .
  3. f(x) f ( x ) [a,a] [ − a , a ] 上连续且为奇函数,则
    aaf(x)dx=0 ∫ − a a f ( x ) d x = 0
  4. f(x) f ( x ) [0,1] [ 0 , 1 ] 上连续,则
    π20f(sina)dx=π20f(cosx)dx ∫ 0 π 2 f ( sin ⁡ a ) d x = ∫ 0 π 2 f ( cos ⁡ x ) d x
    π0xf(sinx)dx=π2π0f(sinx)dx ∫ 0 π x f ( sin ⁡ x ) d x = π 2 ∫ 0 π f ( sin ⁡ x ) d x
  5. f(x) f ( x ) 是连续的周期函数,周期为 T T ,则
    aa+Tf(x)dx=0Tf(x)dx
    a+nTaf(x)dx=nT0f(x)dx(nN) ∫ a a + n T f ( x ) d x = n ∫ 0 T f ( x ) d x ( n ∈ N )

定积分的分部积分法

定积分的分部积分公式:

bauvdx=[uv]babavudx ∫ a b u v ′ d x = [ u v ] a b − ∫ a b v u ′ d x
baudv=[uv]baabvdu ∫ a b u d v = [ u v ] a b − ∫ a b v d u

反常积分

无穷限的反常积分

  1. 设函数 f(x) f ( x ) 在区间 [a,+) [ a , + ∞ ) 上连续,取 t>a t > a ,如果极限
    limt+taf(x)dx lim t → + ∞ ∫ a t f ( x ) d x
    存在,则称此极限为函数 f(x) f ( x ) 在无穷区间 [a,+) [ a , + ∞ ) 上的反常积分,记作 +af(x)dx ∫ a + ∞ f ( x ) d x ,即
    +af(x)dx=limt+taf(x)dx ∫ a + ∞ f ( x ) d x = lim t → + ∞ ∫ a t f ( x ) d x
    ,这时也称反常积分 +af(x)dx ∫ a + ∞ f ( x ) d x 收敛;如果上述极限不存在,则函数 f(x) f ( x ) 在无穷区间 [a,+) [ a , + ∞ ) 上的反常积分 +af(x)dx ∫ a + ∞ f ( x ) d x 就没有意义,习惯上称为反常积分 +af(x)dx ∫ a + ∞ f ( x ) d x 发散,这时记号 +af(x)dx ∫ a + ∞ f ( x ) d x 不再表示数值了。
  2. 类似地,设函数 f(x) f ( x ) 在区间 (,b] ( − ∞ , b ] 上连续,取 t<b t < b ,如果极限
    limtbtf(x)dx lim t → − ∞ ∫ t b f ( x ) d x
    存在,则称此极限为函数 f(x) f ( x ) 在无穷区间 (,b] ( − ∞ , b ] 上的反常积分,记作 bf(x)dx ∫ − ∞ b f ( x ) d x ,即
    bf(x)dx=limtbtf(x)dx ∫ − ∞ b f ( x ) d x = lim t → − ∞ ∫ t b f ( x ) d x
    ,这时也称反常积分 bf(x)dx ∫ − ∞ b f ( x ) d x 收敛;如果上述极限不存在,则称反常积分 bf(x)dx ∫ − ∞ b f ( x ) d x 发散
  3. 设函数 f(x) f ( x ) 在区间 (,+) ( − ∞ , + ∞ ) 上连续,如果反常积分
    0f(x)dx+0f(x)dx ∫ − ∞ 0 f ( x ) d x 和 ∫ 0 + ∞ f ( x ) d x
    都收敛,则称上述两反常积分之和为函数 f(x) f ( x ) 在无穷区间 (,+) ( − ∞ , + ∞ ) 上的反常积分,记作 +f(x)dx ∫ − ∞ + ∞ f ( x ) d x ,即
    +f(x)dx=0f(x)dx++0f(x)dx=limt0tf(x)dx+limt+t0f(x)dx ∫ − ∞ + ∞ f ( x ) d x = ∫ − ∞ 0 f ( x ) d x + ∫ 0 + ∞ f ( x ) d x = lim t → − ∞ ∫ t 0 f ( x ) d x + lim t → + ∞ ∫ 0 t f ( x ) d x
    ,这时也称反常积分 +f(x)dx ∫ − ∞ + ∞ f ( x ) d x 收敛;否则就称反常积分 +f(x)dx ∫ − ∞ + ∞ f ( x ) d x 发散

无界函数的反常积分

  1. 如果函数 f(x) f ( x ) 在点 a a 的任一邻域内部都无界,那么点a称为函数 f(x) f ( x ) 的瑕点(也称为无界间断点)。无界函数的反常积分又称为瑕积分
  2. 设函数 f(x) f ( x ) (a,b] ( a , b ] 上连续,点 a a f(x)的瑕点,取 t>a t > a ,如果极限
    limta+btf(x)dx lim t → a + ∫ t b f ( x ) d x
    存在,则称此极限为函数 f(x) f ( x ) (a,b] ( a , b ] 上的反常积分,仍然记作 baf(x)dx ∫ a b f ( x ) d x ,即
    baf(x)dx=limta+btf(x)dx ∫ a b f ( x ) d x = lim t → a + ∫ t b f ( x ) d x
    。这时也称反常积分 baf(x)dx ∫ a b f ( x ) d x 收敛,如果上述极限不存在,则称反常积分 baf(x)dx ∫ a b f ( x ) d x 发散。
  3. 类似地,设函数 f(x) f ( x ) [a,b) [ a , b ) 上连续,点 b b f(x)的瑕点,取 t<b t < b ,如果极限
    limtbtaf(x)dx lim t → b − ∫ a t f ( x ) d x
    存在,则定义
    baf(x)dx=limtbtaf(x)dx ∫ a b f ( x ) d x = lim t → b − ∫ a t f ( x ) d x
    。否则,就称反常积分 baf(x)dx ∫ a b f ( x ) d x 发散。
  4. 设函数 f(x) f ( x ) [a,b] [ a , b ] 上除点 ca<c<b c ( a < c < b ) 外连续,点 c c f(x)的瑕点,如果两个反常积分
    caf(x)dxbcf(x)dx ∫ a c f ( x ) d x 和 ∫ c b f ( x ) d x
    都收敛,则定义
    baf(x)dx=caf(x)dx+bcf(x)dx=limtctaf(x)dx+limtc+btf(x)dx ∫ a b f ( x ) d x = ∫ a c f ( x ) d x + ∫ c b f ( x ) d x = lim t → c − ∫ a t f ( x ) d x + lim t → c + ∫ t b f ( x ) d x
    。否则,就称反常积分 baf(x)dx ∫ a b f ( x ) d x 发散。

反常积分的审敛法 Γ Γ 函数

无穷限反常积分的审敛法

  1. 设函数 f(x) f ( x ) 在区间 [a,+) [ a , + ∞ ) 上连续,且 f(x)0 f ( x ) ≥ 0 。若函数
    F(x)=xaf(t)dt F ( x ) = ∫ a x f ( t ) d t
    [a,+) [ a , + ∞ ) 上有上界,则反常积分 +af(x)dx ∫ a + ∞ f ( x ) d x 收敛
  2. 对于非负函数的无穷限的反常积分:(比较审敛原理)设函数 f(x)g(x) f ( x ) 、 g ( x ) 在区间 [a,+) [ a , + ∞ ) 上连续,如果 0f(x)g(x)ax<+ 0 ≤ f ( x ) ≤ g ( x ) ( a ≤ x < + ∞ ) ,并且 +ag(x)dx ∫ a + ∞ g ( x ) d x 收敛,则 +af(x)dx ∫ a + ∞ f ( x ) d x 也收敛;如果 0g(x)f(x)ax<+ 0 ≤ g ( x ) ≤ f ( x ) ( a ≤ x < + ∞ ) ,并且 +ag(x)dx ∫ a + ∞ g ( x ) d x 发散,则 +af(x)dx ∫ a + ∞ f ( x ) d x 也发散
  3. 比较审敛法1:设函数 f(x) f ( x ) 在区间 [a,+)a>0 [ a , + ∞ ) ( a > 0 ) 上连续,且 f(x)0 f ( x ) ≥ 0 ,如果存在常数 M>0 M > 0 p>1 p > 1 ,使得 f(x)Mxpax<+ f ( x ) ≤ M x p ( a ≤ x < + ∞ ) ,则反常积分 +af(x)dx ∫ a + ∞ f ( x ) d x 收敛;如果存在常数 N>0 N > 0 ,使得 f(x)Nxax<+ f ( x ) ≥ N x ( a ≤ x < + ∞ ) ,则反常积分 +af(x)dx ∫ a + ∞ f ( x ) d x 发散
  4. 极限审敛法:设函数 f(x) f ( x ) 在区间 [a,+) [ a , + ∞ ) 上连续,且 f(x)0 f ( x ) ≥ 0 ,如果存在常数 p>1 p > 1 ,使得 limx+xpf(x) lim x → + ∞ x p f ( x ) 存在,则反常积分 +af(x)dx ∫ a + ∞ f ( x ) d x 收敛;如果 limx+xf(x)=d>0 lim x → + ∞ x f ( x ) = d > 0 (或 limx+xf(x)=+ lim x → + ∞ x f ( x ) = + ∞ ),则反常积分 +af(x)dx ∫ a + ∞ f ( x ) d x 发散
  5. 设函数 f(x) f ( x ) 在区间 [a,+) [ a , + ∞ ) 上连续,如果反常积分
    +a|f(x)|dx ∫ a + ∞ | f ( x ) | d x
    收敛,则反常积分
    +af(x)dx ∫ a + ∞ f ( x ) d x
    也收敛。满足这个条件的反常积分 +af(x)dx ∫ a + ∞ f ( x ) d x 绝对收敛,因此这个定理可简单表达为:绝对收敛的反常积分 +af(x)dx ∫ a + ∞ f ( x ) d x 必定收敛

无界函数的反常积分的审敛法

  1. 比较审敛法2:设函数 f(x) f ( x ) 在区间 (a,b] ( a , b ] 上连续,且 f(x)0 f ( x ) ≤ 0 x=a x = a f(x) f ( x ) 的瑕点,如果存在常数 M>0 M > 0 q<1 q < 1 ,使得
    f(x)M(xa)q(a<xb) f ( x ) ≤ M ( x − a ) q ( a < x ≤ b )
    ,则反常积分 baf(x)dx ∫ a b f ( x ) d x 收敛;如果存在常数 N>0 N > 0 ,使得
    f(x)Nxaa<xb f ( x ) ≥ N x − a ( a < x ≤ b )
    ,则反常积分 baf(x)dx ∫ a b f ( x ) d x 发散
  2. 极限审敛法2:设函数 f(x) f ( x ) 在区间 (a,b] ( a , b ] 上连续,且 f(x)0x=a f ( x ) ≥ 0 , x = a f(x) f ( x ) 的瑕点,如果存在常数 0<q<1 0 < q < 1 ,使得
    limxa+(xa)qf(x) lim x → a + ( x − a ) q f ( x )
    存在,则反常积分 baf(x)dx ∫ a b f ( x ) d x 收敛;如果
    limxa+(xa)f(x)=d>0limxa+(xa)f(x)=+ lim x → a + ( x − a ) f ( x ) = d > 0 ( 或 lim x → a + ( x − a ) f ( x ) = + ∞ )
    ,则反常积分 baf(x)dx ∫ a b f ( x ) d x 发散

Γ Γ 函数

  1. Γ(s)=+0exxs1dxs>0 Γ ( s ) = ∫ 0 + ∞ e − x x s − 1 d x ( s > 0 )
  2. 递推公式:
    Γ(s+1)=sΓ(s)s>0 Γ ( s + 1 ) = s Γ ( s ) ( s > 0 )

    一般的,对于任何正整数,有:
    Γ(n+1)=n! Γ ( n + 1 ) = n !
  3. s0+ s → 0 + 时, Γ(s)+ Γ ( s ) → + ∞
  4. Γ(s)Γ(1s)=πsinπs0<s<1 Γ ( s ) Γ ( 1 − s ) = π sin ⁡ π s ( 0 < s < 1 )
  5. Γ(s)=+0exxs1dx Γ ( s ) = ∫ 0 + ∞ e − x x s − 1 d x 中,做代换 x=u2 x = u 2 ,有
    Γ(s)=2+0eu2u2s1du Γ ( s ) = 2 ∫ 0 + ∞ e − u 2 u 2 s − 1 d u
    ,再令 2s1=t 2 s − 1 = t s=1+t2 s = 1 + t 2 ,即有
    +0eu2utdu=12Γ(1+t2)t>1 ∫ 0 + ∞ e − u 2 u t d u = 1 2 Γ ( 1 + t 2 ) ( t > − 1 )
  • 3
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Vi_NSN

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值