数学分析:定积分的概念

数学分析笔记——总目录

定积分的概念

定积分的产生背景

\quad 不定积分 与 定积分 是积分学中的两大基础问题,在不定积分部分,我们知道,不定积分是求导的逆运算,而本节将要介绍的 定积分 实质上是某种特殊性质的极限,两者既有区别,又有联系。

\quad 下面分析几个示例,引出定积分的概念。

1. 曲边梯形的面积
\quad y = f ( x ) y=f(x) y=f(x) 是闭区间 [ a , b ] [a,b] [a,b] 上的连续函数,且 f ( x ) ≥ 0 f(x) \ge 0 f(x)0,由曲线 y = f ( x ) y=f(x) y=f(x)、直线 x = a x=a x=a、直线 x = b x=b x=b x x x 轴所围成的平面图形的面积称为 曲边梯形。下面来求曲线梯形的面积。

\quad 在区间 [ a , b ] [a,b] [a,b] 上任取一系列分点 x i x_i xi,作成一种划分:
P : a = x 0 < x 1 < x 2 < ⋯ < x n = b , P:a=x_0<x_1<x_2<\cdots<x_n=b, P:a=x0<x1<x2<<xn=b,
记小区间 [ x i , x i ] [x_i,x_i] [xi,xi] 的长度 Δ x i = x i − x i − 1 \Delta x_i=x_i-x_{i-1} Δxi=xixi1,.

\quad 在每个小区间 [ x i − 1 , x i ] [x_{i-1},x_i] [xi1,xi] 上任取一点 ξ i \xi_i ξi,用底为 Δ i \Delta_i Δi,高为 f ( ξ i ) f(\xi_i) f(ξi) 的小矩形近似代替小曲边梯形的面积。则所有这些小矩形的面积之和
∑ i = 1 n f ( ξ i ) Δ x i \sum_{i=1}^{n}f(\xi_i)\Delta x_i i=1nf(ξi)Δxi
就是整个大的曲边梯形的面积的近似。
\quad λ = max ⁡ 1 ≤ i ≤ n { Δ x i } \lambda=\underset{1 \le i \le n}{\max}\{\Delta x_i\} λ=1inmax{Δxi},当 λ → 0 \lambda \rightarrow 0 λ0 时,若极限
lim ⁡ λ → 0 ∑ i = 1 n f ( ξ i ) Δ x i \underset{\lambda \rightarrow 0}{\lim}\sum_{i=1}^{n}f(\xi_i)\Delta x_i λ0limi=1nf(ξi)Δxi
存在,那么这个极限就是所要求的曲边梯形的实际面积。

注意:由于这个曲边梯形的面积是一个客观存在的常量,所以这个极限理所当然地应该与划分 P P P ξ i \xi_i ξi 的取法无关。

2. 变速质点求路程
\quad 求一个速度为 v ( t ) v(t) v(t) 作变速运动的质点从时间 t = T 1 t=T_1 t=T1 t = T 2 t=T_2 t=T2 所经过的路程。
\quad 可以在区间 [ T 1 . T 2 ] [T_1.T_2] [T1.T2] 上取一系列的分点 ξ i \xi_i ξi 作成一种划分:
P : T 1 = t 0 < t 1 < t 2 < ⋯ < t n = T 2 , P:T_1=t_0<t_1<t_2<\cdots<t_n=T_2, P:T1=t0<t1<t2<<tn=T2,
记小区间的长度 Δ t i = t i − t i − 1 \Delta t_i=t_i-t_{i-1} Δti=titi1

\quad 在每个小区间 [ t i − 1 , t i ] [t_{i-1},t_i] [ti1,ti] 上任取一点 ξ i \xi_i ξi,则当 Δ t i \Delta t_i Δti 充分小时, v ( ξ i ) v(\xi_i) v(ξi) 就可以近似地看作是在 [ t i − 1 , t i ] [t_{i-1},t_i] [ti1,ti] 时间段中的 平均速度。因此在该时间段中质点经过的路程就近似地等于 v ( ξ i ) ⋅ Δ t i v(\xi_i)\cdot \Delta t_i v(ξi)Δti

\quad 于是,整个路程就近似地等于
∑ i = 1 n v ( ξ i ) Δ t i , \sum_{i=1}^{n}v(\xi_i)\Delta t_i, i=1nv(ξi)Δti
若当 λ = max ⁡ 1 ≤ i ≤ n { Δ t i } → 0 \lambda=\underset{1 \le i \le n}{\max}\{\Delta t_i\} \rightarrow 0 λ=1inmax{Δti}0 时,极限
lim ⁡ λ → 0 ∑ i = 1 n v ( ξ i ) Δ t i \underset{\lambda \rightarrow 0}{\lim}\sum_{i=1}^{n}v(\xi_i)\Delta t_i λ0limi=1nv(ξi)Δti
存在,那么这个极限值就是所要求的的路程的精确值。

注意:由于路程也是一个客观存在的常量,上述极限显然也与划分 P P P ξ i \xi_i ξi 的取法无关。

通过以上实例,可引出定积分的概念。

定积分的定义


定义 1(Riemann积分):设 y = f ( x ) y=f(x) y=f(x) 是定义在 [ a , b ] [a,b] [a,b] 上的函数,在 [ a , b ] [a,b] [a,b] 上任意取分点 { x i } i = 0 n \{x_i\}_{i=0}^{n} {xi}i=0n,作成一种划分
P : a = x 0 < x 1 < x 2 < ⋯ < x n = b , P:a=x_0<x_1<x_2<\cdots<x_n=b, P:a=x0<x1<x2<<xn=b,
并任意取点 ξ ∈ [ x i − 1 , x i ] \xi \in [x_{i-1},x_i] ξ[xi1,xi] i = 1 , 2 , ⋯   , n i=1,2,\cdots,n i=1,2,,n。作和式
S n = ∑ i = 1 n f ( ξ i ) Δ x i , S_n=\sum_{i=1}^{n}f(\xi_i)\Delta x_i, Sn=i=1nf(ξi)Δxi,
则称和式 S n S_n Sn 为函数 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b] 上的一个 积分和,或 Riemann和

\quad 记小区间 [ x i − 1 , x i ] [x_{i-1},x_i] [xi1,xi] 的长度 Δ x i = x i − x i − 1 \Delta x_i=x_{i}-x_{i-1} Δxi=xixi1,令 λ = max ⁡ 1 ≤ i ≤ n { Δ x i } \lambda=\underset{1 \le i \le n}{\max}\{\Delta x_i\} λ=1inmax{Δxi},若存在某个实数 I I I 使得
lim ⁡ λ → 0 ∑ i = 1 n f ( ξ i ) Δ x i = I , \underset{\lambda \rightarrow 0}{\lim}\sum_{i=1}^{n}f(\xi_i)\Delta x_i=I, λ0limi=1nf(ξi)Δxi=I,
并且极限值 I I I 既与划分 P P P 无关,又与 ξ i \xi_{i} ξi 的取法无关,则称 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]Riemann可积,称极限值 I I I f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b] 上的 Riemann积分,或 定积分,记作:
∫ f ( x ) d x . \int f(x)dx. f(x)dx.
其中, f ( x ) f(x) f(x) 称为 被积函数 x x x 称为 被积变量 [ a , b ] [a,b] [a,b] 称为 积分区间 a a a b b b 分别称为定积分的 下限上限


\quad 对上述定义,作以下说明:

  1. 对于任意一个划分 P P P λ = max ⁡ 1 ≤ i ≤ n { Δ x i } \lambda=\underset{1 \le i \le n}{\max}{\{\Delta x_i\}} λ=1inmax{Δxi} 反映了区间 [ a , b ] [a,b] [a,b] 被分割的细密程度,通常称为划分 P P P细度

  2. 对于给定的一个划分 P P P λ = max ⁡ 1 ≤ i ≤ n { Δ x i } \lambda=\underset{1 \le i \le n}{\max}{\{\Delta x_i\}} λ=1inmax{Δxi} 是随之唯一确定的,但具有相同 λ \lambda λ 的划分却是有无限多个。

  3. 从定义可以看出,定积分的本质是一种极限,但又不同于函数极限。区别在于:数列极限或函数极限中,自变量是简单的 n n n x x x,而积分和的极限(定积分)中对于每个确定的 λ \lambda λ,其对应的划分 P P P 却可以是无穷多个,而相对于某个划分 P P P ξ i \xi_i ξi 的取法又有无限多种,因此有无限多个不同的积分和。

  4. 在不会发生混淆的情况下,一般就将 ”Riemann 可积“ 简称为 “可积”。

  5. 定积分作为 Riemann和 的极限,其值仅与被积函数以及积分区间有关,与积分变量所用的符号无关。即
    ∫ f ( x ) d x = ∫ f ( t ) d t = ∫ f ( u ) d u = ⋯   . \int f(x)dx=\int f(t)dt=\int f(u)du=\cdots. f(x)dx=f(t)dt=f(u)du=.

  6. 定积分是函数的又一重要分析性质(函数的分析性质:连续性、可微性、可导性、可积性)。

参考文献

[1] 陈纪修,于崇华,金路著. 数学分析 上册. 第2版. 北京:高等教育出版社, 2004.06.
[2] 华东师范大学数学系编. 数学分析 上册. 第4版. 北京:高等教育出版社, 2010.07.
[3] 谢惠民,恢自求,易法槐等. 数学分析习题课讲义 上册. 北京:高等教育出版社. 2003.7.10.
[4] 常庚哲,史济怀. 数学分析教程 上册. 第3版. 合肥:中国科学技术大学出版社. 2012.8.
[5] B. A. 卓里奇. 数学分析 第一卷. 第7版. 北京:高等教育出版社.2019.2.

  • 4
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 《品数学分析讲义pdf》是一本涵盖数学分析领域的讲义资料,为学习者提供了系统、全面的学习资源。该讲义以清晰的逻辑结构为基础,循序渐进地介绍了数学分析的基本理论和方法。 首先,该讲义对数学分析的基本概念进行了详细的阐述。通过引入实数域、函数、极限、连续性等概念,使读者对整个分析学科的框架和内在逻辑有了更清晰的认识。 其次,讲义以数列和级数为切入点,深入讲解了数学分析中的重要概念和定理。通过对数列极限、级数收敛性等内容的介绍,读者可以系统地学习和掌握分析学中的关键概念和技巧。此外,讲义还提供了大量的例题和习题,帮助学生加深理解,并锻炼解题能力。 最后,该讲义还涵盖了微分学和积分学的相关内容。从函数的导数和微分开始,深入讲解了微分学的基本原理和应用,如最值与极值问题、等。同时,还介绍了积分学的基本概念和基本定理,如不定积分定积分和曲线积分等,使读者对微积分学有了初步了解。 总而言之,《品数学分析讲义pdf》是一本很好的学习资料。它的结构合理、内容全面,可以帮助读者系统地学习和掌握数学分析的基本理论和方法。不仅可以作为大学数学分析课程的辅助教材,也适合自学者使用。无论是对于数学分析专业学生还是其他对数学分析感兴趣的人士来说,这本讲义都是一本不可多得的学习资源。 ### 回答2: 《品数学分析讲义》pdf是一本关于数学分析内容的讲义,它可以作为学习、教学和参考的好资料。 首先,《品数学分析讲义》pdf全面系统地介绍了数学分析的基本概念、方法和定理。从实数的性质和连续函数的定义开始,逐步讲解了极限、导数、积分等重要内容,有助于学生建立完整的数学分析知识体系。 其次,《品数学分析讲义》pdf以易懂、逻辑严谨为特点,通过详细的推导和解题示例,帮助读者深入理解数学分析的思想和方法。讲义中不仅给出了具体的定理和证明,还注重应用和实例,增强了读者的数学分析应用能力。 再次,《品数学分析讲义》pdf由资深的数学教师所编写,经过多年实践和教学验证,教学经验丰富。他们对数学分析的基础知识和难点问题非常了解,因此讲义中的内容选择合理、重点明确,对于学生来说很有针对性。 最后,《品数学分析讲义》pdf具有便捷性和可搜索性。电子版的讲义可以随时随地进行下载和阅读,方便学生的学习和复习。同时,可通过搜索关键词快速找到所需内容,提高学习效率。 总的来说,《品数学分析讲义》pdf是一本全面系统、易懂实用的数学分析教材。无论是学生还是教师,都可以从中获得丰富的数学分析知识和应用技巧。 ### 回答3: 品数学分析讲义PDF是一本非常重要的数学学习资料。这本讲义是由数学分析专业的权威教授所编写的,涵盖了数学分析的基本概念和理论,适用于本科阶段的数学学习者。 首先,这本讲义详细介绍了数学分析的基础知识。它从实数的性质开始,包括实数的排列性质、代数和基本的上下确界性质。此外,它还介绍了函数的连续性与可导性,以及极限与数列的收敛性等重要概念。这些基础知识是数学分析学习的基础,对于理解高级数学课程非常重要。 其次,这本讲义还涵盖了微积分的相关内容。它介绍了微分和积分的概念,并深入剖析了微积分的基本定理和公式。通过学习这些内容,读者可以掌握求导和积分的技巧,更好地理解函数的变化规律和曲线的性质。这对于理解物理学、工程学和经济学等应用领域中的数学概念至关重要。 此外,这本讲义还提供了大量例题和习题,帮助读者巩固所学知识。这些例题和习题涵盖了各个知识点和难度层次,可以帮助读者更好地理解和应用所学的数学分析知识。 总的来说,品数学分析讲义PDF是一本非常优秀的数学学习资料。它系统全面地介绍了数学分析的基本概念和理论,并提供了大量例题和习题来巩固所学知识。对于任何对数学感兴趣的学习者,这本讲义都是一本不可多得的宝典。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值