数学分析:定积分的概念

数学分析笔记——总目录

定积分的概念

定积分的产生背景

\quad 不定积分 与 定积分 是积分学中的两大基础问题,在不定积分部分,我们知道,不定积分是求导的逆运算,而本节将要介绍的 定积分 实质上是某种特殊性质的极限,两者既有区别,又有联系。

\quad 下面分析几个示例,引出定积分的概念。

1. 曲边梯形的面积
\quad y = f ( x ) y=f(x) y=f(x) 是闭区间 [ a , b ] [a,b] [a,b] 上的连续函数,且 f ( x ) ≥ 0 f(x) \ge 0 f(x)0,由曲线 y = f ( x ) y=f(x) y=f(x)、直线 x = a x=a x=a、直线 x = b x=b x=b x x x 轴所围成的平面图形的面积称为 曲边梯形。下面来求曲线梯形的面积。

\quad 在区间 [ a , b ] [a,b] [a,b] 上任取一系列分点 x i x_i xi,作成一种划分:
P : a = x 0 < x 1 < x 2 < ⋯ < x n = b , P:a=x_0<x_1<x_2<\cdots<x_n=b, P:a=x0<x1<x2<<xn=b,
记小区间 [ x i , x i ] [x_i,x_i] [xi,xi] 的长度 Δ x i = x i − x i − 1 \Delta x_i=x_i-x_{i-1} Δxi=xixi1,.

\quad 在每个小区间 [ x i − 1 , x i ] [x_{i-1},x_i] [xi1,xi] 上任取一点 ξ i \xi_i ξi,用底为 Δ i \Delta_i Δi,高为 f ( ξ i ) f(\xi_i) f(ξi) 的小矩形近似代替小曲边梯形的面积。则所有这些小矩形的面积之和
∑ i = 1 n f ( ξ i ) Δ x i \sum_{i=1}^{n}f(\xi_i)\Delta x_i i=1nf(ξi)Δxi
就是整个大的曲边梯形的面积的近似。
\quad λ = max ⁡ 1 ≤ i ≤ n { Δ x i } \lambda=\underset{1 \le i \le n}{\max}\{\Delta x_i\} λ=1inmax{Δxi},当 λ → 0 \lambda \rightarrow 0 λ0 时,若极限
lim ⁡ λ → 0 ∑ i = 1 n f ( ξ i ) Δ x i \underset{\lambda \rightarrow 0}{\lim}\sum_{i=1}^{n}f(\xi_i)\Delta x_i λ0limi=1nf(ξi)Δxi
存在,那么这个极限就是所要求的曲边梯形的实际面积。

注意:由于这个曲边梯形的面积是一个客观存在的常量,所以这个极限理所当然地应该与划分 P P P ξ i \xi_i ξi 的取法无关。

2. 变速质点求路程
\quad 求一个速度为 v ( t ) v(t) v(t) 作变速运动的质点从时间 t = T 1 t=T_1 t=T1 t = T 2 t=T_2 t=T2 所经过的路程。
\quad 可以在区间 [ T 1 . T 2 ] [T_1.T_2] [T1.T2] 上取一系列的分点 ξ i \xi_i ξi 作成一种划分:
P : T 1 = t 0 < t 1 < t 2 < ⋯ < t n = T 2 , P:T_1=t_0<t_1<t_2<\cdots<t_n=T_2, P:T1=t0<t1<t2<<tn=T2,
记小区间的长度 Δ t i = t i − t i − 1 \Delta t_i=t_i-t_{i-1} Δti=titi1

\quad 在每个小区间 [ t i − 1 , t i ] [t_{i-1},t_i] [ti1,ti] 上任取一点 ξ i \xi_i ξi,则当 Δ t i \Delta t_i Δti 充分小时, v ( ξ i ) v(\xi_i) v(ξi) 就可以近似地看作是在 [ t i − 1 , t i ] [t_{i-1},t_i] [ti1,ti] 时间段中的 平均速度。因此在该时间段中质点经过的路程就近似地等于 v ( ξ i ) ⋅ Δ t i v(\xi_i)\cdot \Delta t_i v(ξi)Δti

\quad 于是,整个路程就近似地等于
∑ i = 1 n v ( ξ i ) Δ t i , \sum_{i=1}^{n}v(\xi_i)\Delta t_i, i=1nv(ξi)Δti
若当 λ = max ⁡ 1 ≤ i ≤ n { Δ t i } → 0 \lambda=\underset{1 \le i \le n}{\max}\{\Delta t_i\} \rightarrow 0 λ=1inmax{Δti}0 时,极限
lim ⁡ λ → 0 ∑ i = 1 n v ( ξ i ) Δ t i \underset{\lambda \rightarrow 0}{\lim}\sum_{i=1}^{n}v(\xi_i)\Delta t_i λ0limi=1nv(ξi)Δti
存在,那么这个极限值就是所要求的的路程的精确值。

注意:由于路程也是一个客观存在的常量,上述极限显然也与划分 P P P ξ i \xi_i ξi 的取法无关。

通过以上实例,可引出定积分的概念。

定积分的定义


定义 1(Riemann积分):设 y = f ( x ) y=f(x) y=f(x) 是定义在 [ a , b ] [a,b] [a,b] 上的函数,在 [ a , b ] [a,b] [a,b] 上任意取分点 { x i } i = 0 n \{x_i\}_{i=0}^{n} {xi}i=0n,作成一种划分
P : a = x 0 < x 1 < x 2 < ⋯ < x n = b , P:a=x_0<x_1<x_2<\cdots<x_n=b, P:a=x0<x1<x2<<xn=b,
并任意取点 ξ ∈ [ x i − 1 , x i ] \xi \in [x_{i-1},x_i] ξ[xi1,xi] i = 1 , 2 , ⋯   , n i=1,2,\cdots,n i=1,2,,n。作和式
S n = ∑ i = 1 n f ( ξ i ) Δ x i , S_n=\sum_{i=1}^{n}f(\xi_i)\Delta x_i, Sn=i=1nf(ξi)Δxi,
则称和式 S n S_n Sn 为函数 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b] 上的一个 积分和,或 Riemann和

\quad 记小区间 [ x i − 1 , x i ] [x_{i-1},x_i] [xi1,xi] 的长度 Δ x i = x i − x i − 1 \Delta x_i=x_{i}-x_{i-1} Δxi=xixi1,令 λ = max ⁡ 1 ≤ i ≤ n { Δ x i } \lambda=\underset{1 \le i \le n}{\max}\{\Delta x_i\} λ=1inmax{Δxi},若存在某个实数 I I I 使得
lim ⁡ λ → 0 ∑ i = 1 n f ( ξ i ) Δ x i = I , \underset{\lambda \rightarrow 0}{\lim}\sum_{i=1}^{n}f(\xi_i)\Delta x_i=I, λ0limi=1nf(ξi)Δxi=I,
并且极限值 I I I 既与划分 P P P 无关,又与 ξ i \xi_{i} ξi 的取法无关,则称 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]Riemann可积,称极限值 I I I f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b] 上的 Riemann积分,或 定积分,记作:
∫ f ( x ) d x . \int f(x)dx. f(x)dx.
其中, f ( x ) f(x) f(x) 称为 被积函数 x x x 称为 被积变量 [ a , b ] [a,b] [a,b] 称为 积分区间 a a a b b b 分别称为定积分的 下限上限


\quad 对上述定义,作以下说明:

  1. 对于任意一个划分 P P P λ = max ⁡ 1 ≤ i ≤ n { Δ x i } \lambda=\underset{1 \le i \le n}{\max}{\{\Delta x_i\}} λ=1inmax{Δxi} 反映了区间 [ a , b ] [a,b] [a,b] 被分割的细密程度,通常称为划分 P P P细度

  2. 对于给定的一个划分 P P P λ = max ⁡ 1 ≤ i ≤ n { Δ x i } \lambda=\underset{1 \le i \le n}{\max}{\{\Delta x_i\}} λ=1inmax{Δxi} 是随之唯一确定的,但具有相同 λ \lambda λ 的划分却是有无限多个。

  3. 从定义可以看出,定积分的本质是一种极限,但又不同于函数极限。区别在于:数列极限或函数极限中,自变量是简单的 n n n x x x,而积分和的极限(定积分)中对于每个确定的 λ \lambda λ,其对应的划分 P P P 却可以是无穷多个,而相对于某个划分 P P P ξ i \xi_i ξi 的取法又有无限多种,因此有无限多个不同的积分和。

  4. 在不会发生混淆的情况下,一般就将 ”Riemann 可积“ 简称为 “可积”。

  5. 定积分作为 Riemann和 的极限,其值仅与被积函数以及积分区间有关,与积分变量所用的符号无关。即
    ∫ f ( x ) d x = ∫ f ( t ) d t = ∫ f ( u ) d u = ⋯   . \int f(x)dx=\int f(t)dt=\int f(u)du=\cdots. f(x)dx=f(t)dt=f(u)du=.

  6. 定积分是函数的又一重要分析性质(函数的分析性质:连续性、可微性、可导性、可积性)。

参考文献

[1] 陈纪修,于崇华,金路著. 数学分析 上册. 第2版. 北京:高等教育出版社, 2004.06.
[2] 华东师范大学数学系编. 数学分析 上册. 第4版. 北京:高等教育出版社, 2010.07.
[3] 谢惠民,恢自求,易法槐等. 数学分析习题课讲义 上册. 北京:高等教育出版社. 2003.7.10.
[4] 常庚哲,史济怀. 数学分析教程 上册. 第3版. 合肥:中国科学技术大学出版社. 2012.8.
[5] B. A. 卓里奇. 数学分析 第一卷. 第7版. 北京:高等教育出版社.2019.2.

  • 4
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值